Allowed Publications
LayerRx Mapping ID
405
Slot System
Featured Buckets
Featured Buckets Admin

How Common Is Pediatric Emergency Mistriage?

Article Type
Changed
Tue, 08/13/2024 - 13:19

Only one third of pediatric patients were correctly triaged at emergency departments (EDs) in a northern California health care system, according to a multicenter retrospective study published in JAMA Pediatrics. Researchers also identified gender, age, race, ethnicity, and comorbidity disparities in those who were undertriaged.

The researchers found that only 34.1% of visits were correctly triaged while 58.5% were overtriaged and 7.4% were undertriaged. The findings were based on analysis of more than 1 million pediatric emergency visits over a 5-year period that used the Emergency Severity Index (ESI) version 4 for triage.

“The ESI had poor sensitivity in identifying a critically ill pediatric patient, and undertriage occurred in 1 in 14 children,” wrote Dana R. Sax, MD, a senior emergency physician at The Permanente Medical Group in northern California, and her colleagues.

Dana R. Sax, MD, is senior physician with The Permanente Medical Group (TPMG), practicing emergency medicine at the Oakland, Richmond, and San Rafael medical centers in northern California.
Dr. Dana R. Sax


“More than 90% of pediatric visits were assigned a mid to low triage acuity category, and actual resource use and care intensity frequently did not align with ESI predictions,” the authors wrote. “Our findings highlight an opportunity to improve triage for pediatric patients to mitigate critical undertriage, optimize resource decisions, standardize processes across time and setting, and promote more equitable care.”

The authors added that the study findings are currently being used by the Permanente system “to develop standardized triage education across centers to improve early identification of high-risk patients.”
 

Disparities in Emergency Care

The results underscore the need for more work to address disparities in emergency care, wrote Warren D. Frankenberger, PhD, RN, a nurse scientist at Children’s Hospital of Philadelphia, and two colleagues in an accompanying editorial.

“Decisions in triage can have significant downstream effects on subsequent care during the ED visit,” they wrote in their editorial. “Given that the triage process in most instances is fully executed by nurses, nurse researchers are in a key position to evaluate these and other covariates to influence further improvements in triage.” They suggested that use of clinical decision support tools and artificial intelligence (AI) may improve the triage process, albeit with the caveat that AI often relies on models with pre-existing historical bias that may perpetuate structural inequalities.
 

Study Methodology

The researchers analyzed 1,016,816 pediatric visits at 21 emergency departments in Kaiser Permanente Northern California between January 2016 and December 2020. The patients were an average 7 years old, and 47% were female. The researchers excluded visits that lacked ESI data or had incomplete ED time variables as well as those with patients who left against medical advice, were not seen, or were transferred from another ED.

The study relied on novel definitions of ESI undertriage and overtriage developed through a modified Delphi process by a team of four emergency physicians, one pediatric emergency physician, two emergency nurses, and one pediatric ICU physician. The definition involved comparing ESI levels to the clinical outcomes and resource use.

Resources included laboratory analysis, electrocardiography, radiography, CT, MRI, diagnostic ultrasonography (not point of care), angiography, IV fluids, and IV, intramuscular, or nebulized medications. Resources did not include “oral medications, tetanus immunizations, point-of-care testing, history and physical examination, saline or heparin lock, prescription refills, simple wound care, crutches, splints, and slings.”

Level 1 events were those requiring time-sensitive, critical intervention, including high-risk sepsis. Level 2 events included most level 1 events that occurred after the first hour (except operating room admission or hospital transfer) as well as respiratory therapy, toxicology consult, lumbar puncture, suicidality as chief concern, at least 2 doses of albuterol or continuous albuterol nebulization, a skeletal survey x-ray order, and medical social work consult with an ED length of stay of at least 2 hours. Level 3 events included IV mediation order, any CT order, OR admission or hospital transfer after one hour, or any pediatric hospitalist consult.
 

 

 

Analyzing the ED Visits

Overtriaged cases were ESI level 1 or 2 cases in which fewer than 2 resources were used; level 3 cases where fewer than 2 resources were used and no level 1 or 2 events occurred; and level 4 cases where no resources were used.

Undertriaged cases were defined as the following:

  • ESI level 5 cases where any resource was used and any level 1, 2, or 3 events occurred.
  • Level 4 cases where more than 1 resource was used and any level 1, 2, or 3 events occurred.
  • Level 3 cases where any level 1 event occurred, more than one level 2 event occurred, or any level 2 event occurred and more than one additional ED resource type was used.
  • Level 2 cases where any level 1 event occurred.

About half the visits (51%) were assigned ESI 3, which was the category with the highest proportion of mistriage. After adjusting for study facility and triage vital signs, the researchers found that children age 6 and older were more likely to be undertriaged than those younger than 6, particularly those age 15 and older (relative risk [RR], 1.36).

Undertriage was also modestly more likely with male patients (female patients’ RR, 0.93), patients with comorbidities (RR, 1.11-1.2), patients who arrived by ambulance (RR, 1.04), and patients who were Asian (RR, 1.10), Black (RR, 1.05), or Hispanic (RR, 1.04). Undertriage became gradually less likely with each additional year in the study period, with an RR of 0.89 in 2019 and 2020.

Among the study’s limitations were use of ESI version 4, instead of the currently used 5, and the omission of common procedures from the outcome definition that “may systematically bias the analysis toward overtriage,” the editorial noted. The authors also did not include pain as a variable in the analysis, which can often indicate patient acuity.

Further, this study was unable to include covariates identified in other research that may influence clinical decision-making, such as “the presenting illness or injury, children with complex medical needs, and language proficiency,” Dr. Frankenberger and colleagues wrote. “Furthermore, environmental stressors, such as ED volume and crowding, can influence how a nurse prioritizes care and may increase bias in decision-making and/or increase practice variability.”

The study was funded by the Kaiser Permanente Northern California (KPNC) Community Health program. One author had consulting payments from CSL Behring and Abbott Point-of-Care, and six of the authors have received grant funding from the KPNC Community Health program. The editorial authors reported no conflicts of interest.

Publications
Topics
Sections

Only one third of pediatric patients were correctly triaged at emergency departments (EDs) in a northern California health care system, according to a multicenter retrospective study published in JAMA Pediatrics. Researchers also identified gender, age, race, ethnicity, and comorbidity disparities in those who were undertriaged.

The researchers found that only 34.1% of visits were correctly triaged while 58.5% were overtriaged and 7.4% were undertriaged. The findings were based on analysis of more than 1 million pediatric emergency visits over a 5-year period that used the Emergency Severity Index (ESI) version 4 for triage.

“The ESI had poor sensitivity in identifying a critically ill pediatric patient, and undertriage occurred in 1 in 14 children,” wrote Dana R. Sax, MD, a senior emergency physician at The Permanente Medical Group in northern California, and her colleagues.

Dana R. Sax, MD, is senior physician with The Permanente Medical Group (TPMG), practicing emergency medicine at the Oakland, Richmond, and San Rafael medical centers in northern California.
Dr. Dana R. Sax


“More than 90% of pediatric visits were assigned a mid to low triage acuity category, and actual resource use and care intensity frequently did not align with ESI predictions,” the authors wrote. “Our findings highlight an opportunity to improve triage for pediatric patients to mitigate critical undertriage, optimize resource decisions, standardize processes across time and setting, and promote more equitable care.”

The authors added that the study findings are currently being used by the Permanente system “to develop standardized triage education across centers to improve early identification of high-risk patients.”
 

Disparities in Emergency Care

The results underscore the need for more work to address disparities in emergency care, wrote Warren D. Frankenberger, PhD, RN, a nurse scientist at Children’s Hospital of Philadelphia, and two colleagues in an accompanying editorial.

“Decisions in triage can have significant downstream effects on subsequent care during the ED visit,” they wrote in their editorial. “Given that the triage process in most instances is fully executed by nurses, nurse researchers are in a key position to evaluate these and other covariates to influence further improvements in triage.” They suggested that use of clinical decision support tools and artificial intelligence (AI) may improve the triage process, albeit with the caveat that AI often relies on models with pre-existing historical bias that may perpetuate structural inequalities.
 

Study Methodology

The researchers analyzed 1,016,816 pediatric visits at 21 emergency departments in Kaiser Permanente Northern California between January 2016 and December 2020. The patients were an average 7 years old, and 47% were female. The researchers excluded visits that lacked ESI data or had incomplete ED time variables as well as those with patients who left against medical advice, were not seen, or were transferred from another ED.

The study relied on novel definitions of ESI undertriage and overtriage developed through a modified Delphi process by a team of four emergency physicians, one pediatric emergency physician, two emergency nurses, and one pediatric ICU physician. The definition involved comparing ESI levels to the clinical outcomes and resource use.

Resources included laboratory analysis, electrocardiography, radiography, CT, MRI, diagnostic ultrasonography (not point of care), angiography, IV fluids, and IV, intramuscular, or nebulized medications. Resources did not include “oral medications, tetanus immunizations, point-of-care testing, history and physical examination, saline or heparin lock, prescription refills, simple wound care, crutches, splints, and slings.”

Level 1 events were those requiring time-sensitive, critical intervention, including high-risk sepsis. Level 2 events included most level 1 events that occurred after the first hour (except operating room admission or hospital transfer) as well as respiratory therapy, toxicology consult, lumbar puncture, suicidality as chief concern, at least 2 doses of albuterol or continuous albuterol nebulization, a skeletal survey x-ray order, and medical social work consult with an ED length of stay of at least 2 hours. Level 3 events included IV mediation order, any CT order, OR admission or hospital transfer after one hour, or any pediatric hospitalist consult.
 

 

 

Analyzing the ED Visits

Overtriaged cases were ESI level 1 or 2 cases in which fewer than 2 resources were used; level 3 cases where fewer than 2 resources were used and no level 1 or 2 events occurred; and level 4 cases where no resources were used.

Undertriaged cases were defined as the following:

  • ESI level 5 cases where any resource was used and any level 1, 2, or 3 events occurred.
  • Level 4 cases where more than 1 resource was used and any level 1, 2, or 3 events occurred.
  • Level 3 cases where any level 1 event occurred, more than one level 2 event occurred, or any level 2 event occurred and more than one additional ED resource type was used.
  • Level 2 cases where any level 1 event occurred.

About half the visits (51%) were assigned ESI 3, which was the category with the highest proportion of mistriage. After adjusting for study facility and triage vital signs, the researchers found that children age 6 and older were more likely to be undertriaged than those younger than 6, particularly those age 15 and older (relative risk [RR], 1.36).

Undertriage was also modestly more likely with male patients (female patients’ RR, 0.93), patients with comorbidities (RR, 1.11-1.2), patients who arrived by ambulance (RR, 1.04), and patients who were Asian (RR, 1.10), Black (RR, 1.05), or Hispanic (RR, 1.04). Undertriage became gradually less likely with each additional year in the study period, with an RR of 0.89 in 2019 and 2020.

Among the study’s limitations were use of ESI version 4, instead of the currently used 5, and the omission of common procedures from the outcome definition that “may systematically bias the analysis toward overtriage,” the editorial noted. The authors also did not include pain as a variable in the analysis, which can often indicate patient acuity.

Further, this study was unable to include covariates identified in other research that may influence clinical decision-making, such as “the presenting illness or injury, children with complex medical needs, and language proficiency,” Dr. Frankenberger and colleagues wrote. “Furthermore, environmental stressors, such as ED volume and crowding, can influence how a nurse prioritizes care and may increase bias in decision-making and/or increase practice variability.”

The study was funded by the Kaiser Permanente Northern California (KPNC) Community Health program. One author had consulting payments from CSL Behring and Abbott Point-of-Care, and six of the authors have received grant funding from the KPNC Community Health program. The editorial authors reported no conflicts of interest.

Only one third of pediatric patients were correctly triaged at emergency departments (EDs) in a northern California health care system, according to a multicenter retrospective study published in JAMA Pediatrics. Researchers also identified gender, age, race, ethnicity, and comorbidity disparities in those who were undertriaged.

The researchers found that only 34.1% of visits were correctly triaged while 58.5% were overtriaged and 7.4% were undertriaged. The findings were based on analysis of more than 1 million pediatric emergency visits over a 5-year period that used the Emergency Severity Index (ESI) version 4 for triage.

“The ESI had poor sensitivity in identifying a critically ill pediatric patient, and undertriage occurred in 1 in 14 children,” wrote Dana R. Sax, MD, a senior emergency physician at The Permanente Medical Group in northern California, and her colleagues.

Dana R. Sax, MD, is senior physician with The Permanente Medical Group (TPMG), practicing emergency medicine at the Oakland, Richmond, and San Rafael medical centers in northern California.
Dr. Dana R. Sax


“More than 90% of pediatric visits were assigned a mid to low triage acuity category, and actual resource use and care intensity frequently did not align with ESI predictions,” the authors wrote. “Our findings highlight an opportunity to improve triage for pediatric patients to mitigate critical undertriage, optimize resource decisions, standardize processes across time and setting, and promote more equitable care.”

The authors added that the study findings are currently being used by the Permanente system “to develop standardized triage education across centers to improve early identification of high-risk patients.”
 

Disparities in Emergency Care

The results underscore the need for more work to address disparities in emergency care, wrote Warren D. Frankenberger, PhD, RN, a nurse scientist at Children’s Hospital of Philadelphia, and two colleagues in an accompanying editorial.

“Decisions in triage can have significant downstream effects on subsequent care during the ED visit,” they wrote in their editorial. “Given that the triage process in most instances is fully executed by nurses, nurse researchers are in a key position to evaluate these and other covariates to influence further improvements in triage.” They suggested that use of clinical decision support tools and artificial intelligence (AI) may improve the triage process, albeit with the caveat that AI often relies on models with pre-existing historical bias that may perpetuate structural inequalities.
 

Study Methodology

The researchers analyzed 1,016,816 pediatric visits at 21 emergency departments in Kaiser Permanente Northern California between January 2016 and December 2020. The patients were an average 7 years old, and 47% were female. The researchers excluded visits that lacked ESI data or had incomplete ED time variables as well as those with patients who left against medical advice, were not seen, or were transferred from another ED.

The study relied on novel definitions of ESI undertriage and overtriage developed through a modified Delphi process by a team of four emergency physicians, one pediatric emergency physician, two emergency nurses, and one pediatric ICU physician. The definition involved comparing ESI levels to the clinical outcomes and resource use.

Resources included laboratory analysis, electrocardiography, radiography, CT, MRI, diagnostic ultrasonography (not point of care), angiography, IV fluids, and IV, intramuscular, or nebulized medications. Resources did not include “oral medications, tetanus immunizations, point-of-care testing, history and physical examination, saline or heparin lock, prescription refills, simple wound care, crutches, splints, and slings.”

Level 1 events were those requiring time-sensitive, critical intervention, including high-risk sepsis. Level 2 events included most level 1 events that occurred after the first hour (except operating room admission or hospital transfer) as well as respiratory therapy, toxicology consult, lumbar puncture, suicidality as chief concern, at least 2 doses of albuterol or continuous albuterol nebulization, a skeletal survey x-ray order, and medical social work consult with an ED length of stay of at least 2 hours. Level 3 events included IV mediation order, any CT order, OR admission or hospital transfer after one hour, or any pediatric hospitalist consult.
 

 

 

Analyzing the ED Visits

Overtriaged cases were ESI level 1 or 2 cases in which fewer than 2 resources were used; level 3 cases where fewer than 2 resources were used and no level 1 or 2 events occurred; and level 4 cases where no resources were used.

Undertriaged cases were defined as the following:

  • ESI level 5 cases where any resource was used and any level 1, 2, or 3 events occurred.
  • Level 4 cases where more than 1 resource was used and any level 1, 2, or 3 events occurred.
  • Level 3 cases where any level 1 event occurred, more than one level 2 event occurred, or any level 2 event occurred and more than one additional ED resource type was used.
  • Level 2 cases where any level 1 event occurred.

About half the visits (51%) were assigned ESI 3, which was the category with the highest proportion of mistriage. After adjusting for study facility and triage vital signs, the researchers found that children age 6 and older were more likely to be undertriaged than those younger than 6, particularly those age 15 and older (relative risk [RR], 1.36).

Undertriage was also modestly more likely with male patients (female patients’ RR, 0.93), patients with comorbidities (RR, 1.11-1.2), patients who arrived by ambulance (RR, 1.04), and patients who were Asian (RR, 1.10), Black (RR, 1.05), or Hispanic (RR, 1.04). Undertriage became gradually less likely with each additional year in the study period, with an RR of 0.89 in 2019 and 2020.

Among the study’s limitations were use of ESI version 4, instead of the currently used 5, and the omission of common procedures from the outcome definition that “may systematically bias the analysis toward overtriage,” the editorial noted. The authors also did not include pain as a variable in the analysis, which can often indicate patient acuity.

Further, this study was unable to include covariates identified in other research that may influence clinical decision-making, such as “the presenting illness or injury, children with complex medical needs, and language proficiency,” Dr. Frankenberger and colleagues wrote. “Furthermore, environmental stressors, such as ED volume and crowding, can influence how a nurse prioritizes care and may increase bias in decision-making and/or increase practice variability.”

The study was funded by the Kaiser Permanente Northern California (KPNC) Community Health program. One author had consulting payments from CSL Behring and Abbott Point-of-Care, and six of the authors have received grant funding from the KPNC Community Health program. The editorial authors reported no conflicts of interest.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM JAMA PEDIATRICS

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

E-Bikes: The Good ... and the Ugly

Article Type
Changed
Tue, 08/13/2024 - 11:28

Bicycles have been woven into my life since I first straddled a hand-me-down with a fan belt drive when I was 3. At age 12 my friend Ricky and I took a 250 mile–plus 2-night adventure on our 3-speed “English” style bikes. We still marvel that our parents let us do it when neither cell phones nor GPS existed.

I have always bike commuted to work, including the years when that involved a perilous navigation into Boston from the suburbs. In our mid-50s my wife and I biked from Washington state back here to Maine with another couple unsupported. We continue to do at least one self-guided cycle tour out of the country each year.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

Not surprisingly, I keep a close eye on what’s happening in the bicycle market. For decades the trends have shifted back and forth between sleek road models and beefier off-roaders. There have been boom years here and there for the dealers and manufacturers, but nothing like what the bike industry is experiencing now with the arrival of e-bikes on the market. Driven primarily by electrification, micromobility ridership (which includes conventional bikes and scooters) has grown more than 50-fold over the last 10 years. Projections suggest the market’s value will be $300 billion by 2030.

It doesn’t take an MBA with a major in marketing to understand the broad appeal of electrification. Most adults have ridden a bicycle as children, but several decades of gap years has left many of them with a level of fitness that makes pedaling against the wind or up any incline difficult and unappealing. An e-bike can put even the least fitness conscious back in the saddle and open the options for outdoor recreation they haven’t dreamed of since childhood.

In large part the people flocking to e-bikes are retiree’s who thought they were “over the hill.” They are having so much fun they don’t care if the Lycra-clad “serious” cyclists notice the battery bulge in the frame on their e-bikes. Another group of e-bike adopters are motivated by the “greenness” of a fossil-fuel–free electric powered transportation which, with minimal compromise, can be used as they would a car around town and for longer commutes than they would have considered on a purely pedal-powered bicycle.

Unfortunately, there is a growing group of younger e-bike riders who are motivated and uninhibited by the potential that the power boost of a small electric motor can provide. And here is where the ugliness begins to intrude on what was otherwise a beautiful and expanding landscape. With the increase in e-bike popularity, there has been an understandable increase in injuries in all age groups. However, it is the young who are, not surprisingly, drawn to the speed, and with any vehicle – motorized or conventional – as speed increases so does the frequency and seriousness of accidents.

The term e-bike covers a broad range of vehicles, from those designated class 1, which require pedaling and are limited to 20 miles per hour, to class 3, which may have a throttle and unmodified can hit 28 mph. Class 2 bikes have a throttle that will allow the rider to reach 20 mph without pedaling. Modifying any class of e-bike can substantially increase its speed, but this is more common in classes 2 and 3. As an example, some very fast micromobiles are considered unclassified e-bikes and avoid being labeled motorcycles simply because they have pedals.

One has to give some credit to the e-bike industry for eventually adopting this classification system. But, we must give the rest of us, including parents and public safety officials, a failing grade for doing a poor job of translating these scores into enforceable regulations to protect both riders and pedestrians from serious injury.

On the governmental side only a little more than half of US states have used the three category classification to craft their regulations. Many jurisdictions have failed to differentiate between streets, sidewalks, and trails. Regulations vary from state to state, and many states leave it up to local communities. From my experience chairing our town’s Bicycle and Pedestrian Advisory Committee, I can tell you that even “progressive” communities are struggling to decide who can ride what where. The result has been that people of all ages, but mostly adolescents, are traveling on busy streets and sidewalks at speeds that put themselves and pedestrians at risk.

On the parental side of the problem are families that have either allowed or enabled their children to ride class 2 and 3 e-bikes without proper safety equipment or consideration for the safety of the rest of the community. Currently, this is not much of a problem here in Maine thanks to the weather and the high price of e-bikes. However, I frequently visit an affluent community in the San Francisco Bay Area, where it is not uncommon to see middle school children speeding along well in excess of 20 mph.

Unfortunately this is another example, like television and cell phone, in which our society has been unable to keep up with technology by molding the behavior of our children and/or creating enforceable rules that allow us to reap the benefits of new discoveries while minimizing the collateral damage that can accompany them.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Publications
Topics
Sections

Bicycles have been woven into my life since I first straddled a hand-me-down with a fan belt drive when I was 3. At age 12 my friend Ricky and I took a 250 mile–plus 2-night adventure on our 3-speed “English” style bikes. We still marvel that our parents let us do it when neither cell phones nor GPS existed.

I have always bike commuted to work, including the years when that involved a perilous navigation into Boston from the suburbs. In our mid-50s my wife and I biked from Washington state back here to Maine with another couple unsupported. We continue to do at least one self-guided cycle tour out of the country each year.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

Not surprisingly, I keep a close eye on what’s happening in the bicycle market. For decades the trends have shifted back and forth between sleek road models and beefier off-roaders. There have been boom years here and there for the dealers and manufacturers, but nothing like what the bike industry is experiencing now with the arrival of e-bikes on the market. Driven primarily by electrification, micromobility ridership (which includes conventional bikes and scooters) has grown more than 50-fold over the last 10 years. Projections suggest the market’s value will be $300 billion by 2030.

It doesn’t take an MBA with a major in marketing to understand the broad appeal of electrification. Most adults have ridden a bicycle as children, but several decades of gap years has left many of them with a level of fitness that makes pedaling against the wind or up any incline difficult and unappealing. An e-bike can put even the least fitness conscious back in the saddle and open the options for outdoor recreation they haven’t dreamed of since childhood.

In large part the people flocking to e-bikes are retiree’s who thought they were “over the hill.” They are having so much fun they don’t care if the Lycra-clad “serious” cyclists notice the battery bulge in the frame on their e-bikes. Another group of e-bike adopters are motivated by the “greenness” of a fossil-fuel–free electric powered transportation which, with minimal compromise, can be used as they would a car around town and for longer commutes than they would have considered on a purely pedal-powered bicycle.

Unfortunately, there is a growing group of younger e-bike riders who are motivated and uninhibited by the potential that the power boost of a small electric motor can provide. And here is where the ugliness begins to intrude on what was otherwise a beautiful and expanding landscape. With the increase in e-bike popularity, there has been an understandable increase in injuries in all age groups. However, it is the young who are, not surprisingly, drawn to the speed, and with any vehicle – motorized or conventional – as speed increases so does the frequency and seriousness of accidents.

The term e-bike covers a broad range of vehicles, from those designated class 1, which require pedaling and are limited to 20 miles per hour, to class 3, which may have a throttle and unmodified can hit 28 mph. Class 2 bikes have a throttle that will allow the rider to reach 20 mph without pedaling. Modifying any class of e-bike can substantially increase its speed, but this is more common in classes 2 and 3. As an example, some very fast micromobiles are considered unclassified e-bikes and avoid being labeled motorcycles simply because they have pedals.

One has to give some credit to the e-bike industry for eventually adopting this classification system. But, we must give the rest of us, including parents and public safety officials, a failing grade for doing a poor job of translating these scores into enforceable regulations to protect both riders and pedestrians from serious injury.

On the governmental side only a little more than half of US states have used the three category classification to craft their regulations. Many jurisdictions have failed to differentiate between streets, sidewalks, and trails. Regulations vary from state to state, and many states leave it up to local communities. From my experience chairing our town’s Bicycle and Pedestrian Advisory Committee, I can tell you that even “progressive” communities are struggling to decide who can ride what where. The result has been that people of all ages, but mostly adolescents, are traveling on busy streets and sidewalks at speeds that put themselves and pedestrians at risk.

On the parental side of the problem are families that have either allowed or enabled their children to ride class 2 and 3 e-bikes without proper safety equipment or consideration for the safety of the rest of the community. Currently, this is not much of a problem here in Maine thanks to the weather and the high price of e-bikes. However, I frequently visit an affluent community in the San Francisco Bay Area, where it is not uncommon to see middle school children speeding along well in excess of 20 mph.

Unfortunately this is another example, like television and cell phone, in which our society has been unable to keep up with technology by molding the behavior of our children and/or creating enforceable rules that allow us to reap the benefits of new discoveries while minimizing the collateral damage that can accompany them.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Bicycles have been woven into my life since I first straddled a hand-me-down with a fan belt drive when I was 3. At age 12 my friend Ricky and I took a 250 mile–plus 2-night adventure on our 3-speed “English” style bikes. We still marvel that our parents let us do it when neither cell phones nor GPS existed.

I have always bike commuted to work, including the years when that involved a perilous navigation into Boston from the suburbs. In our mid-50s my wife and I biked from Washington state back here to Maine with another couple unsupported. We continue to do at least one self-guided cycle tour out of the country each year.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

Not surprisingly, I keep a close eye on what’s happening in the bicycle market. For decades the trends have shifted back and forth between sleek road models and beefier off-roaders. There have been boom years here and there for the dealers and manufacturers, but nothing like what the bike industry is experiencing now with the arrival of e-bikes on the market. Driven primarily by electrification, micromobility ridership (which includes conventional bikes and scooters) has grown more than 50-fold over the last 10 years. Projections suggest the market’s value will be $300 billion by 2030.

It doesn’t take an MBA with a major in marketing to understand the broad appeal of electrification. Most adults have ridden a bicycle as children, but several decades of gap years has left many of them with a level of fitness that makes pedaling against the wind or up any incline difficult and unappealing. An e-bike can put even the least fitness conscious back in the saddle and open the options for outdoor recreation they haven’t dreamed of since childhood.

In large part the people flocking to e-bikes are retiree’s who thought they were “over the hill.” They are having so much fun they don’t care if the Lycra-clad “serious” cyclists notice the battery bulge in the frame on their e-bikes. Another group of e-bike adopters are motivated by the “greenness” of a fossil-fuel–free electric powered transportation which, with minimal compromise, can be used as they would a car around town and for longer commutes than they would have considered on a purely pedal-powered bicycle.

Unfortunately, there is a growing group of younger e-bike riders who are motivated and uninhibited by the potential that the power boost of a small electric motor can provide. And here is where the ugliness begins to intrude on what was otherwise a beautiful and expanding landscape. With the increase in e-bike popularity, there has been an understandable increase in injuries in all age groups. However, it is the young who are, not surprisingly, drawn to the speed, and with any vehicle – motorized or conventional – as speed increases so does the frequency and seriousness of accidents.

The term e-bike covers a broad range of vehicles, from those designated class 1, which require pedaling and are limited to 20 miles per hour, to class 3, which may have a throttle and unmodified can hit 28 mph. Class 2 bikes have a throttle that will allow the rider to reach 20 mph without pedaling. Modifying any class of e-bike can substantially increase its speed, but this is more common in classes 2 and 3. As an example, some very fast micromobiles are considered unclassified e-bikes and avoid being labeled motorcycles simply because they have pedals.

One has to give some credit to the e-bike industry for eventually adopting this classification system. But, we must give the rest of us, including parents and public safety officials, a failing grade for doing a poor job of translating these scores into enforceable regulations to protect both riders and pedestrians from serious injury.

On the governmental side only a little more than half of US states have used the three category classification to craft their regulations. Many jurisdictions have failed to differentiate between streets, sidewalks, and trails. Regulations vary from state to state, and many states leave it up to local communities. From my experience chairing our town’s Bicycle and Pedestrian Advisory Committee, I can tell you that even “progressive” communities are struggling to decide who can ride what where. The result has been that people of all ages, but mostly adolescents, are traveling on busy streets and sidewalks at speeds that put themselves and pedestrians at risk.

On the parental side of the problem are families that have either allowed or enabled their children to ride class 2 and 3 e-bikes without proper safety equipment or consideration for the safety of the rest of the community. Currently, this is not much of a problem here in Maine thanks to the weather and the high price of e-bikes. However, I frequently visit an affluent community in the San Francisco Bay Area, where it is not uncommon to see middle school children speeding along well in excess of 20 mph.

Unfortunately this is another example, like television and cell phone, in which our society has been unable to keep up with technology by molding the behavior of our children and/or creating enforceable rules that allow us to reap the benefits of new discoveries while minimizing the collateral damage that can accompany them.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Consider Risks, Toxicity of Some Topical Ingredients in Infants, Young Children

Article Type
Changed
Thu, 08/01/2024 - 15:11

— Lawrence A. Schachner, MD, would like pediatric dermatologists to adopt a “toxic agent of the year” to raise awareness about the potential harm related to certain topical treatments in babies and young children.

Dr. Schachner, director of the Division of Pediatric Dermatology in the Department of Dermatology & Cutaneous Surgery at the University of Miami, Coral Gables, Florida, said he got the idea from the American Contact Dermatitis Society, which annually names the “Allergen of the Year.”

In pediatric dermatology, the list of potentially toxic products includes topical analgesics such as Castellani paint used for skin infections, alcohols used for umbilical care in newborns, and henna dye used in cosmetics, said Dr. Schachner, professor of pediatrics and dermatology at the University of Miami.

“Any one of those would be excellent toxic substances of the year” that could be the focus of an educational campaign, he told this news organization following his presentation on “Toxicology of Topical Ingredients in Pediatric Dermatology” at the annual meeting of the Society for Pediatric Dermatology on July 14.

Benzene might also be a good candidate for the list, although the jury seems to be still out on its toxicity, said Dr. Schachner.

He talked about the “four Ps” of poisoning — the physician, pharmacy, parents, and pharmaceutical manufacturing — which all have some responsibility for errors that lead to adverse outcomes but can also take steps to prevent them.

During his presentation, Dr. Schachner discussed how babies are especially sensitive to topical therapies, noting that a baby’s skin is thinner and more permeable than that of an adult. And children have a greater body surface-to-weight ratio, so they absorb more substances through their skin.

He also noted that babies lack natural moisturizing factors, and their skin barrier isn’t mature until about age 3-5 years, stressing the need for extreme care when applying a topical agent to a baby’s skin.

Tragic Stories

Dr. Schachner pointed to some instances of mishaps related to toxic topical substances in children. There was the outbreak in the early 1980s of accidental hexachlorophene poisoning among children in France exposed to talc “baby powder.” Of the 204 affected children, 36 died.

The cause was a manufacturing error; the product contained 6.3% hexachlorophene, as opposed to the 0.1% limit recommended by the US Food and Drug Administration (FDA).

Local anesthetics, including lidocaine, dibucaine, and prilocaine, can cause local anesthetic systemic toxicity, a syndrome with symptoms that include central nervous system depression, seizures, and cardiotoxicity. Dr. Schachner described the case of a 3-year-old who developed methemoglobinemia, with seizures, after treatment with an excessive amount of eutectic mixture of local anesthetics (EMLA) cream, which contains both lidocaine and prilocaine.

EMLA shouldn’t be used with methemoglobinemia-inducing agents, such as some antimalarials, analgesics, anesthetics, and antineoplastic agents. It’s not recommended in neonates or for those under 12 months if receiving methemoglobinemia-inducing agents, “and I would keep an eye on it after 12 months of age,” said Dr. Schachner.

He cited a retrospective review of topical lidocaine toxicity in pediatric patients reported to the National Poison Data System from 2000 to 2020. It found 37 cases of toxicity, the most common from application prior to dermatologic procedures (37.5%), which led to two deaths.
 

 

 

Not Benign Agents

“These are not benign agents; we have to use them correctly,” Dr. Schachner stressed. When discussing alcohols and antiseptics, he noted that phenol is found in a variety of household disinfectants, gargling products, ointments, and lip balms. Phenol can be used as a chemical peel and is the antiseptic component of Castellani paint. He also referred to cases of alcohol intoxication linked to umbilical care in newborns.

Benzene at elevated levels has been found in some topical benzoyl peroxide acne products and in some sunscreens. There have been suggestions, not strongly substantiated, that benzene may increase the risk for cancer, especially leukemias.

But there is sparse data on the absorption and toxicity of benzene exposure with sunscreen use. The data, he said, include an analysis of National Health and Nutrition Examination Survey data, which found that people who regularly used sunscreens were less likely to have elevated benzene levels compared with those who didn’t use sunscreens.

Turning to insecticides, Dr. Schachner discussed N,N-diethyl-m-toluamide (DEET), the active ingredient in many insect repellents. It helps avoid “some terrible diseases,” including mosquito-borne illnesses such as malaria and tick-borne conditions such as Lyme disease, and is available in several convenient formulations, he said.

When used on children, the American Academy of Pediatrics (AAP) recommends products with no more than 30% DEET. And insect repellents are not recommended for children younger than 2 months, or under clothing or damaged skin, he said.

Dr. Schachner referred to a case series of 18 children who developed DEET-induced encephalopathy; 13 (72%) involved dermal exposure. Three of those with cutaneous exposure died, mostly from neurologic, respiratory, and cardiac issues. “What’s very striking is that 55% of the kids were exposed to DEET of 20% or less, even though the AAP approves DEET at 30%, so maybe that’s something we have to look at,” he said.
 

Medication Patches

With medication patches, especially fentanyl transdermal patches, much can go wrong when it comes to children. This was highlighted by the cases Schachner cited, including an infant who developed acute cytotoxic cerebellar edema from fentanyl patch intoxication.

In another case, emergency room staff found a fentanyl patch stuck to the back of a 3-year-old girl. A CT scan showed global cerebral edema, and the patient progressed to brain death. “This is not a unique case; there have been over 10 such cases in the United States,” said Dr. Schachner. “We should be doing better with fentanyl.”

Nicotine patches can also be dangerous to children, he added. As for other topical agents, there have been reports of toxicity and deaths linked to salicylic acid, commonly used by dermatologists because of its bacteriostatic, fungicidal, keratolytic, and photoprotective properties.

Dr. Schachner cited the case of a 2-month-old where the pediatrician prescribed 50% salicylic acid for seborrheic dermatitis of the scalp, under occlusion. “It’s amazing this child survived; that’s clearly a physician error,” he said.

Henna, a reddish-brown dye derived from the crushed leaves of Lawsonia alba, is used cosmetically for the hair, skin, and nails. Many henna products are mixed with additives, including para-phenylenediamine, which has been associated with dermatitis, asthma, renal failure, and permanent vision loss.

Asked to comment on the presentation, Sheilagh Maguiness, MD, professor of dermatology and pediatrics and chair of pediatric dermatology at the University of Minnesota, Minneapolis, recalled a particularly concerning story in 2008, when the FDA issued a warning about Mommy’s Bliss, a cream containing chlorphenesin and phenoxyethanol as preservatives, promoted to nursing mothers for soothing cracked nipples. There were reports of the cream causing respiratory distress, vomiting, and diarrhea in nursing infants.

Dr. Schachner is chair of Stiefel Laboratories and is an investigator with: Astellas, Berg Pharma, Celgene, Ferndale Labs, Lilly, Medimetriks Pharmaceuticals, Novartis, Organogenesis, Pfizer, Sciton; is a consultant for: Alphyn, Amryt Pharma, Beiersdorf, Brickell, Cutanea, Hoth, Lexington, Mustela, TopMD, Noble Pharma; a speaker for: Novartis, Sanofi-Regeneron, CeraVe; is on the advisory boards of: Almirall, Alphyn, Apogee, Aslan, Biofrontera, CeraVe, Krystal Biotech, Mustela, Noble Pharma, Pfizer, Pierre Fabre, Sanofi-Regeneron; and owns stocks in: TopMD and Alphyn. Dr. Maguiness had no relevant conflicts of interest.
 

A version of this article appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

— Lawrence A. Schachner, MD, would like pediatric dermatologists to adopt a “toxic agent of the year” to raise awareness about the potential harm related to certain topical treatments in babies and young children.

Dr. Schachner, director of the Division of Pediatric Dermatology in the Department of Dermatology & Cutaneous Surgery at the University of Miami, Coral Gables, Florida, said he got the idea from the American Contact Dermatitis Society, which annually names the “Allergen of the Year.”

In pediatric dermatology, the list of potentially toxic products includes topical analgesics such as Castellani paint used for skin infections, alcohols used for umbilical care in newborns, and henna dye used in cosmetics, said Dr. Schachner, professor of pediatrics and dermatology at the University of Miami.

“Any one of those would be excellent toxic substances of the year” that could be the focus of an educational campaign, he told this news organization following his presentation on “Toxicology of Topical Ingredients in Pediatric Dermatology” at the annual meeting of the Society for Pediatric Dermatology on July 14.

Benzene might also be a good candidate for the list, although the jury seems to be still out on its toxicity, said Dr. Schachner.

He talked about the “four Ps” of poisoning — the physician, pharmacy, parents, and pharmaceutical manufacturing — which all have some responsibility for errors that lead to adverse outcomes but can also take steps to prevent them.

During his presentation, Dr. Schachner discussed how babies are especially sensitive to topical therapies, noting that a baby’s skin is thinner and more permeable than that of an adult. And children have a greater body surface-to-weight ratio, so they absorb more substances through their skin.

He also noted that babies lack natural moisturizing factors, and their skin barrier isn’t mature until about age 3-5 years, stressing the need for extreme care when applying a topical agent to a baby’s skin.

Tragic Stories

Dr. Schachner pointed to some instances of mishaps related to toxic topical substances in children. There was the outbreak in the early 1980s of accidental hexachlorophene poisoning among children in France exposed to talc “baby powder.” Of the 204 affected children, 36 died.

The cause was a manufacturing error; the product contained 6.3% hexachlorophene, as opposed to the 0.1% limit recommended by the US Food and Drug Administration (FDA).

Local anesthetics, including lidocaine, dibucaine, and prilocaine, can cause local anesthetic systemic toxicity, a syndrome with symptoms that include central nervous system depression, seizures, and cardiotoxicity. Dr. Schachner described the case of a 3-year-old who developed methemoglobinemia, with seizures, after treatment with an excessive amount of eutectic mixture of local anesthetics (EMLA) cream, which contains both lidocaine and prilocaine.

EMLA shouldn’t be used with methemoglobinemia-inducing agents, such as some antimalarials, analgesics, anesthetics, and antineoplastic agents. It’s not recommended in neonates or for those under 12 months if receiving methemoglobinemia-inducing agents, “and I would keep an eye on it after 12 months of age,” said Dr. Schachner.

He cited a retrospective review of topical lidocaine toxicity in pediatric patients reported to the National Poison Data System from 2000 to 2020. It found 37 cases of toxicity, the most common from application prior to dermatologic procedures (37.5%), which led to two deaths.
 

 

 

Not Benign Agents

“These are not benign agents; we have to use them correctly,” Dr. Schachner stressed. When discussing alcohols and antiseptics, he noted that phenol is found in a variety of household disinfectants, gargling products, ointments, and lip balms. Phenol can be used as a chemical peel and is the antiseptic component of Castellani paint. He also referred to cases of alcohol intoxication linked to umbilical care in newborns.

Benzene at elevated levels has been found in some topical benzoyl peroxide acne products and in some sunscreens. There have been suggestions, not strongly substantiated, that benzene may increase the risk for cancer, especially leukemias.

But there is sparse data on the absorption and toxicity of benzene exposure with sunscreen use. The data, he said, include an analysis of National Health and Nutrition Examination Survey data, which found that people who regularly used sunscreens were less likely to have elevated benzene levels compared with those who didn’t use sunscreens.

Turning to insecticides, Dr. Schachner discussed N,N-diethyl-m-toluamide (DEET), the active ingredient in many insect repellents. It helps avoid “some terrible diseases,” including mosquito-borne illnesses such as malaria and tick-borne conditions such as Lyme disease, and is available in several convenient formulations, he said.

When used on children, the American Academy of Pediatrics (AAP) recommends products with no more than 30% DEET. And insect repellents are not recommended for children younger than 2 months, or under clothing or damaged skin, he said.

Dr. Schachner referred to a case series of 18 children who developed DEET-induced encephalopathy; 13 (72%) involved dermal exposure. Three of those with cutaneous exposure died, mostly from neurologic, respiratory, and cardiac issues. “What’s very striking is that 55% of the kids were exposed to DEET of 20% or less, even though the AAP approves DEET at 30%, so maybe that’s something we have to look at,” he said.
 

Medication Patches

With medication patches, especially fentanyl transdermal patches, much can go wrong when it comes to children. This was highlighted by the cases Schachner cited, including an infant who developed acute cytotoxic cerebellar edema from fentanyl patch intoxication.

In another case, emergency room staff found a fentanyl patch stuck to the back of a 3-year-old girl. A CT scan showed global cerebral edema, and the patient progressed to brain death. “This is not a unique case; there have been over 10 such cases in the United States,” said Dr. Schachner. “We should be doing better with fentanyl.”

Nicotine patches can also be dangerous to children, he added. As for other topical agents, there have been reports of toxicity and deaths linked to salicylic acid, commonly used by dermatologists because of its bacteriostatic, fungicidal, keratolytic, and photoprotective properties.

Dr. Schachner cited the case of a 2-month-old where the pediatrician prescribed 50% salicylic acid for seborrheic dermatitis of the scalp, under occlusion. “It’s amazing this child survived; that’s clearly a physician error,” he said.

Henna, a reddish-brown dye derived from the crushed leaves of Lawsonia alba, is used cosmetically for the hair, skin, and nails. Many henna products are mixed with additives, including para-phenylenediamine, which has been associated with dermatitis, asthma, renal failure, and permanent vision loss.

Asked to comment on the presentation, Sheilagh Maguiness, MD, professor of dermatology and pediatrics and chair of pediatric dermatology at the University of Minnesota, Minneapolis, recalled a particularly concerning story in 2008, when the FDA issued a warning about Mommy’s Bliss, a cream containing chlorphenesin and phenoxyethanol as preservatives, promoted to nursing mothers for soothing cracked nipples. There were reports of the cream causing respiratory distress, vomiting, and diarrhea in nursing infants.

Dr. Schachner is chair of Stiefel Laboratories and is an investigator with: Astellas, Berg Pharma, Celgene, Ferndale Labs, Lilly, Medimetriks Pharmaceuticals, Novartis, Organogenesis, Pfizer, Sciton; is a consultant for: Alphyn, Amryt Pharma, Beiersdorf, Brickell, Cutanea, Hoth, Lexington, Mustela, TopMD, Noble Pharma; a speaker for: Novartis, Sanofi-Regeneron, CeraVe; is on the advisory boards of: Almirall, Alphyn, Apogee, Aslan, Biofrontera, CeraVe, Krystal Biotech, Mustela, Noble Pharma, Pfizer, Pierre Fabre, Sanofi-Regeneron; and owns stocks in: TopMD and Alphyn. Dr. Maguiness had no relevant conflicts of interest.
 

A version of this article appeared on Medscape.com.

— Lawrence A. Schachner, MD, would like pediatric dermatologists to adopt a “toxic agent of the year” to raise awareness about the potential harm related to certain topical treatments in babies and young children.

Dr. Schachner, director of the Division of Pediatric Dermatology in the Department of Dermatology & Cutaneous Surgery at the University of Miami, Coral Gables, Florida, said he got the idea from the American Contact Dermatitis Society, which annually names the “Allergen of the Year.”

In pediatric dermatology, the list of potentially toxic products includes topical analgesics such as Castellani paint used for skin infections, alcohols used for umbilical care in newborns, and henna dye used in cosmetics, said Dr. Schachner, professor of pediatrics and dermatology at the University of Miami.

“Any one of those would be excellent toxic substances of the year” that could be the focus of an educational campaign, he told this news organization following his presentation on “Toxicology of Topical Ingredients in Pediatric Dermatology” at the annual meeting of the Society for Pediatric Dermatology on July 14.

Benzene might also be a good candidate for the list, although the jury seems to be still out on its toxicity, said Dr. Schachner.

He talked about the “four Ps” of poisoning — the physician, pharmacy, parents, and pharmaceutical manufacturing — which all have some responsibility for errors that lead to adverse outcomes but can also take steps to prevent them.

During his presentation, Dr. Schachner discussed how babies are especially sensitive to topical therapies, noting that a baby’s skin is thinner and more permeable than that of an adult. And children have a greater body surface-to-weight ratio, so they absorb more substances through their skin.

He also noted that babies lack natural moisturizing factors, and their skin barrier isn’t mature until about age 3-5 years, stressing the need for extreme care when applying a topical agent to a baby’s skin.

Tragic Stories

Dr. Schachner pointed to some instances of mishaps related to toxic topical substances in children. There was the outbreak in the early 1980s of accidental hexachlorophene poisoning among children in France exposed to talc “baby powder.” Of the 204 affected children, 36 died.

The cause was a manufacturing error; the product contained 6.3% hexachlorophene, as opposed to the 0.1% limit recommended by the US Food and Drug Administration (FDA).

Local anesthetics, including lidocaine, dibucaine, and prilocaine, can cause local anesthetic systemic toxicity, a syndrome with symptoms that include central nervous system depression, seizures, and cardiotoxicity. Dr. Schachner described the case of a 3-year-old who developed methemoglobinemia, with seizures, after treatment with an excessive amount of eutectic mixture of local anesthetics (EMLA) cream, which contains both lidocaine and prilocaine.

EMLA shouldn’t be used with methemoglobinemia-inducing agents, such as some antimalarials, analgesics, anesthetics, and antineoplastic agents. It’s not recommended in neonates or for those under 12 months if receiving methemoglobinemia-inducing agents, “and I would keep an eye on it after 12 months of age,” said Dr. Schachner.

He cited a retrospective review of topical lidocaine toxicity in pediatric patients reported to the National Poison Data System from 2000 to 2020. It found 37 cases of toxicity, the most common from application prior to dermatologic procedures (37.5%), which led to two deaths.
 

 

 

Not Benign Agents

“These are not benign agents; we have to use them correctly,” Dr. Schachner stressed. When discussing alcohols and antiseptics, he noted that phenol is found in a variety of household disinfectants, gargling products, ointments, and lip balms. Phenol can be used as a chemical peel and is the antiseptic component of Castellani paint. He also referred to cases of alcohol intoxication linked to umbilical care in newborns.

Benzene at elevated levels has been found in some topical benzoyl peroxide acne products and in some sunscreens. There have been suggestions, not strongly substantiated, that benzene may increase the risk for cancer, especially leukemias.

But there is sparse data on the absorption and toxicity of benzene exposure with sunscreen use. The data, he said, include an analysis of National Health and Nutrition Examination Survey data, which found that people who regularly used sunscreens were less likely to have elevated benzene levels compared with those who didn’t use sunscreens.

Turning to insecticides, Dr. Schachner discussed N,N-diethyl-m-toluamide (DEET), the active ingredient in many insect repellents. It helps avoid “some terrible diseases,” including mosquito-borne illnesses such as malaria and tick-borne conditions such as Lyme disease, and is available in several convenient formulations, he said.

When used on children, the American Academy of Pediatrics (AAP) recommends products with no more than 30% DEET. And insect repellents are not recommended for children younger than 2 months, or under clothing or damaged skin, he said.

Dr. Schachner referred to a case series of 18 children who developed DEET-induced encephalopathy; 13 (72%) involved dermal exposure. Three of those with cutaneous exposure died, mostly from neurologic, respiratory, and cardiac issues. “What’s very striking is that 55% of the kids were exposed to DEET of 20% or less, even though the AAP approves DEET at 30%, so maybe that’s something we have to look at,” he said.
 

Medication Patches

With medication patches, especially fentanyl transdermal patches, much can go wrong when it comes to children. This was highlighted by the cases Schachner cited, including an infant who developed acute cytotoxic cerebellar edema from fentanyl patch intoxication.

In another case, emergency room staff found a fentanyl patch stuck to the back of a 3-year-old girl. A CT scan showed global cerebral edema, and the patient progressed to brain death. “This is not a unique case; there have been over 10 such cases in the United States,” said Dr. Schachner. “We should be doing better with fentanyl.”

Nicotine patches can also be dangerous to children, he added. As for other topical agents, there have been reports of toxicity and deaths linked to salicylic acid, commonly used by dermatologists because of its bacteriostatic, fungicidal, keratolytic, and photoprotective properties.

Dr. Schachner cited the case of a 2-month-old where the pediatrician prescribed 50% salicylic acid for seborrheic dermatitis of the scalp, under occlusion. “It’s amazing this child survived; that’s clearly a physician error,” he said.

Henna, a reddish-brown dye derived from the crushed leaves of Lawsonia alba, is used cosmetically for the hair, skin, and nails. Many henna products are mixed with additives, including para-phenylenediamine, which has been associated with dermatitis, asthma, renal failure, and permanent vision loss.

Asked to comment on the presentation, Sheilagh Maguiness, MD, professor of dermatology and pediatrics and chair of pediatric dermatology at the University of Minnesota, Minneapolis, recalled a particularly concerning story in 2008, when the FDA issued a warning about Mommy’s Bliss, a cream containing chlorphenesin and phenoxyethanol as preservatives, promoted to nursing mothers for soothing cracked nipples. There were reports of the cream causing respiratory distress, vomiting, and diarrhea in nursing infants.

Dr. Schachner is chair of Stiefel Laboratories and is an investigator with: Astellas, Berg Pharma, Celgene, Ferndale Labs, Lilly, Medimetriks Pharmaceuticals, Novartis, Organogenesis, Pfizer, Sciton; is a consultant for: Alphyn, Amryt Pharma, Beiersdorf, Brickell, Cutanea, Hoth, Lexington, Mustela, TopMD, Noble Pharma; a speaker for: Novartis, Sanofi-Regeneron, CeraVe; is on the advisory boards of: Almirall, Alphyn, Apogee, Aslan, Biofrontera, CeraVe, Krystal Biotech, Mustela, Noble Pharma, Pfizer, Pierre Fabre, Sanofi-Regeneron; and owns stocks in: TopMD and Alphyn. Dr. Maguiness had no relevant conflicts of interest.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM SPD 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Let ’em Play: In Defense of Youth Football

Article Type
Changed
Mon, 07/15/2024 - 12:19

Over the last couple of decades, I have become increasingly more uncomfortable watching American-style football on television. Lax refereeing coupled with over-juiced players who can generate g-forces previously attainable only on a NASA rocket sled has resulted in a spate of injuries I find unacceptable. The revolving door of transfers from college to college has made the term scholar-athlete a relic that can be applied to only a handful of players at the smallest uncompetitive schools.

Many of you who are regular readers of Letters from Maine have probably tired of my boasting that when I played football in high school we wore leather helmets. I enjoyed playing football and continued playing in college for a couple of years until it became obvious that “bench” was going to be my usual position. But, I would not want my grandson to play college football. Certainly, not at the elite college level. Were he to do so, he would be putting himself at risk for significant injury by participating in what I no longer view as an appealing activity. Let me add that I am not including chronic traumatic encephalopathy among my concerns, because I think its association with football injuries is far from settled. My concern is more about spinal cord injuries, which, although infrequent, are almost always devastating.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

I should also make it perfectly clear that my lack of enthusiasm for college and professional football does not place me among the increasingly vocal throng calling for the elimination of youth football. For the 5- to 12-year-olds, putting on pads and a helmet and scrambling around on a grassy field bumping shoulders and heads with their peers is a wonderful way to burn off energy and satisfies a need for roughhousing that comes naturally to most young boys (and many girls). The chance of anyone of those kids playing youth football reaching the elite college or professional level is extremely unlikely. Other activities and the realization that football is not in their future weeds the field during adolescence.

Although there have been some studies suggesting that starting football at an early age is associated with increased injury risk, a recent and well-controlled study published in the journal Sports Medicine has found no such association in professional football players. This finding makes some sense when you consider that most of the children in this age group are not mustering g-forces anywhere close to those a college or professional athlete can generate.

Another recent study published in the Journal of Pediatrics offers more evidence to consider before one passes judgment on youth football. When reviewing the records of nearly 1500 patients in a specialty-care concussion setting at the Children’s Hospital of Philadelphia, investigators found that recreation-related concussions and non–sport- or recreation-related concussions were more prevalent than sports-related concussions. The authors propose that “less supervision at the time of injury and less access to established concussion healthcare following injury” may explain their observations.

Of course as a card-carrying AARP old fogey, I long for the good old days when youth sports were organized by the kids in backyards and playgrounds. There we learned to pick teams and deal with the disappointment of not being a first-round pick and the embarrassment of being a last rounder. We settled out-of-bounds calls and arguments about ball possession without adults’ assistance — or video replays for that matter. But those days are gone and likely never to return, with parental anxiety running at record highs. We must accept youth sports organized for kids by adults is the way it’s going to be for the foreseeable future.

The football that we see on TV, with all its hoopla, ugliness, and mind-numbing advertisements, shouldn’t discourage us from allowing kids who want to knock heads and bump shoulders to enjoy the sport at a young age. As long as the program is organized with the emphasis on fun nor structured as a fast track to elite play it will be healthier for the kids than sitting on the couch at home watching the carnage on TV.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Publications
Topics
Sections

Over the last couple of decades, I have become increasingly more uncomfortable watching American-style football on television. Lax refereeing coupled with over-juiced players who can generate g-forces previously attainable only on a NASA rocket sled has resulted in a spate of injuries I find unacceptable. The revolving door of transfers from college to college has made the term scholar-athlete a relic that can be applied to only a handful of players at the smallest uncompetitive schools.

Many of you who are regular readers of Letters from Maine have probably tired of my boasting that when I played football in high school we wore leather helmets. I enjoyed playing football and continued playing in college for a couple of years until it became obvious that “bench” was going to be my usual position. But, I would not want my grandson to play college football. Certainly, not at the elite college level. Were he to do so, he would be putting himself at risk for significant injury by participating in what I no longer view as an appealing activity. Let me add that I am not including chronic traumatic encephalopathy among my concerns, because I think its association with football injuries is far from settled. My concern is more about spinal cord injuries, which, although infrequent, are almost always devastating.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

I should also make it perfectly clear that my lack of enthusiasm for college and professional football does not place me among the increasingly vocal throng calling for the elimination of youth football. For the 5- to 12-year-olds, putting on pads and a helmet and scrambling around on a grassy field bumping shoulders and heads with their peers is a wonderful way to burn off energy and satisfies a need for roughhousing that comes naturally to most young boys (and many girls). The chance of anyone of those kids playing youth football reaching the elite college or professional level is extremely unlikely. Other activities and the realization that football is not in their future weeds the field during adolescence.

Although there have been some studies suggesting that starting football at an early age is associated with increased injury risk, a recent and well-controlled study published in the journal Sports Medicine has found no such association in professional football players. This finding makes some sense when you consider that most of the children in this age group are not mustering g-forces anywhere close to those a college or professional athlete can generate.

Another recent study published in the Journal of Pediatrics offers more evidence to consider before one passes judgment on youth football. When reviewing the records of nearly 1500 patients in a specialty-care concussion setting at the Children’s Hospital of Philadelphia, investigators found that recreation-related concussions and non–sport- or recreation-related concussions were more prevalent than sports-related concussions. The authors propose that “less supervision at the time of injury and less access to established concussion healthcare following injury” may explain their observations.

Of course as a card-carrying AARP old fogey, I long for the good old days when youth sports were organized by the kids in backyards and playgrounds. There we learned to pick teams and deal with the disappointment of not being a first-round pick and the embarrassment of being a last rounder. We settled out-of-bounds calls and arguments about ball possession without adults’ assistance — or video replays for that matter. But those days are gone and likely never to return, with parental anxiety running at record highs. We must accept youth sports organized for kids by adults is the way it’s going to be for the foreseeable future.

The football that we see on TV, with all its hoopla, ugliness, and mind-numbing advertisements, shouldn’t discourage us from allowing kids who want to knock heads and bump shoulders to enjoy the sport at a young age. As long as the program is organized with the emphasis on fun nor structured as a fast track to elite play it will be healthier for the kids than sitting on the couch at home watching the carnage on TV.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Over the last couple of decades, I have become increasingly more uncomfortable watching American-style football on television. Lax refereeing coupled with over-juiced players who can generate g-forces previously attainable only on a NASA rocket sled has resulted in a spate of injuries I find unacceptable. The revolving door of transfers from college to college has made the term scholar-athlete a relic that can be applied to only a handful of players at the smallest uncompetitive schools.

Many of you who are regular readers of Letters from Maine have probably tired of my boasting that when I played football in high school we wore leather helmets. I enjoyed playing football and continued playing in college for a couple of years until it became obvious that “bench” was going to be my usual position. But, I would not want my grandson to play college football. Certainly, not at the elite college level. Were he to do so, he would be putting himself at risk for significant injury by participating in what I no longer view as an appealing activity. Let me add that I am not including chronic traumatic encephalopathy among my concerns, because I think its association with football injuries is far from settled. My concern is more about spinal cord injuries, which, although infrequent, are almost always devastating.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

I should also make it perfectly clear that my lack of enthusiasm for college and professional football does not place me among the increasingly vocal throng calling for the elimination of youth football. For the 5- to 12-year-olds, putting on pads and a helmet and scrambling around on a grassy field bumping shoulders and heads with their peers is a wonderful way to burn off energy and satisfies a need for roughhousing that comes naturally to most young boys (and many girls). The chance of anyone of those kids playing youth football reaching the elite college or professional level is extremely unlikely. Other activities and the realization that football is not in their future weeds the field during adolescence.

Although there have been some studies suggesting that starting football at an early age is associated with increased injury risk, a recent and well-controlled study published in the journal Sports Medicine has found no such association in professional football players. This finding makes some sense when you consider that most of the children in this age group are not mustering g-forces anywhere close to those a college or professional athlete can generate.

Another recent study published in the Journal of Pediatrics offers more evidence to consider before one passes judgment on youth football. When reviewing the records of nearly 1500 patients in a specialty-care concussion setting at the Children’s Hospital of Philadelphia, investigators found that recreation-related concussions and non–sport- or recreation-related concussions were more prevalent than sports-related concussions. The authors propose that “less supervision at the time of injury and less access to established concussion healthcare following injury” may explain their observations.

Of course as a card-carrying AARP old fogey, I long for the good old days when youth sports were organized by the kids in backyards and playgrounds. There we learned to pick teams and deal with the disappointment of not being a first-round pick and the embarrassment of being a last rounder. We settled out-of-bounds calls and arguments about ball possession without adults’ assistance — or video replays for that matter. But those days are gone and likely never to return, with parental anxiety running at record highs. We must accept youth sports organized for kids by adults is the way it’s going to be for the foreseeable future.

The football that we see on TV, with all its hoopla, ugliness, and mind-numbing advertisements, shouldn’t discourage us from allowing kids who want to knock heads and bump shoulders to enjoy the sport at a young age. As long as the program is organized with the emphasis on fun nor structured as a fast track to elite play it will be healthier for the kids than sitting on the couch at home watching the carnage on TV.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

PPEs — Haystacks and Needles

Article Type
Changed
Fri, 06/21/2024 - 16:46

A story in a recent edition of this newspaper reported on a disturbing, but not surprising, study by a third-year pediatric resident at the University of California, Davis, School of Medicine. Looking at just the Preparticipaton Physical Evaluations (PPEs) she could find at her institution, Tammy Ng, MD, found that only slightly more than a quarter “addressed all the criteria” on the American Academy of Pediatrics (AAP) standardized form. Although more than half included inquiries about respiratory symptoms, less than half contained questions about a cardiovascular history. The lack of consistency across all the forms reviewed was the most dramatic finding.

Having participated in more than my share of PPEs as a school physician, a primary care pediatrician, and a multi-sport high school and college athlete, I was not surprised by Dr. Ng’s findings. In high school my teammates and I considered our trip to see Old Doctor Hinds (not his real name) in the second week of August “a joke.” A few of us with “white coat” hypertension, like myself, had to be settled down and have our blood pressure retaken. But other than that wrinkle, we all passed. The football coach had his own eyeball screening tool and wouldn’t allow kids he thought were too small to play football.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff


Reading this study rekindled a question that surfaced every sports season as I faced days of looking at forms, many of them fished out of backpacks in a crumbled mass. I squeezed in new patients or old patients who were out of date on their physicals, not wanting any youngster to miss out on the politically important first practice of the pre-season. Why was I doing it? What was my goal? In more than four hundred thousand office visit encounters, I had never knowingly missed a case that resulted in a sudden sports-related death. Where was the evidence that PPEs had any protective value? Now a third-year pediatric resident is bold enough to tell us that we have done such a sloppy job of collecting data that we aren’t anywhere close to having the raw material with which to answer my decades-old questions and concerns.

Has our needles-in-the-haystack strategy saved any lives? I suspect a few of you can describe scenarios in which asking the right question of the right person at the right time prevented a sports-related sudden death. But, looking at bigger picture, what were the downsides for the entire population with a system in which those questions weren’t asked?

How many young people didn’t play a sport because their parents couldn’t afford the doctor visit or maintain a family structure that would allow them to find the lost form and drive it to the doctor’s office on Friday afternoon. Not every athletic director or physician’s staff is flexible or sympathetic enough to deal with that level of family dysfunction.

The AAP has recently focused its attention on the problems associated with overspecialization and overtraining in an attempt to make youth sports more safe. But, in reality that target audience is a small, elite, highly motivated group. The bigger problem is the rest of the population, in which too few children are physically active and participation in organized youth sports is decreasing. There are many reasons for that trajectory, but shouldn’t we be doing everything we can to reduce the barriers preventing young people from being more active? One of those barriers is a PPE system that is so riddled with inconsistencies that we have no idea as to its utility.

Certainly, bigger and more robust studies can be done, but there will be a long lead time to determine if a better PPE system might be effective. But there is a different approach. Instead of looking for needles with retrospective questions relying on patients’ and parents’ memories, why not use AI to mine patients’ old records for any language that may be buried in the history that could raise a yellow flag. Of course not every significant episode of syncope results in a chart entry. But, if we can make EMRs do our bidding instead being a thorn in our sides, records from long-forgotten episodes at an urgent care center while on vacation should merge with patients global record and light up when AI goes hunting.

If we can get our act together, the process that my teenage buddies and I considered a joke could become an efficient and possibly life-saving exercise.
 

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Publications
Topics
Sections

A story in a recent edition of this newspaper reported on a disturbing, but not surprising, study by a third-year pediatric resident at the University of California, Davis, School of Medicine. Looking at just the Preparticipaton Physical Evaluations (PPEs) she could find at her institution, Tammy Ng, MD, found that only slightly more than a quarter “addressed all the criteria” on the American Academy of Pediatrics (AAP) standardized form. Although more than half included inquiries about respiratory symptoms, less than half contained questions about a cardiovascular history. The lack of consistency across all the forms reviewed was the most dramatic finding.

Having participated in more than my share of PPEs as a school physician, a primary care pediatrician, and a multi-sport high school and college athlete, I was not surprised by Dr. Ng’s findings. In high school my teammates and I considered our trip to see Old Doctor Hinds (not his real name) in the second week of August “a joke.” A few of us with “white coat” hypertension, like myself, had to be settled down and have our blood pressure retaken. But other than that wrinkle, we all passed. The football coach had his own eyeball screening tool and wouldn’t allow kids he thought were too small to play football.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff


Reading this study rekindled a question that surfaced every sports season as I faced days of looking at forms, many of them fished out of backpacks in a crumbled mass. I squeezed in new patients or old patients who were out of date on their physicals, not wanting any youngster to miss out on the politically important first practice of the pre-season. Why was I doing it? What was my goal? In more than four hundred thousand office visit encounters, I had never knowingly missed a case that resulted in a sudden sports-related death. Where was the evidence that PPEs had any protective value? Now a third-year pediatric resident is bold enough to tell us that we have done such a sloppy job of collecting data that we aren’t anywhere close to having the raw material with which to answer my decades-old questions and concerns.

Has our needles-in-the-haystack strategy saved any lives? I suspect a few of you can describe scenarios in which asking the right question of the right person at the right time prevented a sports-related sudden death. But, looking at bigger picture, what were the downsides for the entire population with a system in which those questions weren’t asked?

How many young people didn’t play a sport because their parents couldn’t afford the doctor visit or maintain a family structure that would allow them to find the lost form and drive it to the doctor’s office on Friday afternoon. Not every athletic director or physician’s staff is flexible or sympathetic enough to deal with that level of family dysfunction.

The AAP has recently focused its attention on the problems associated with overspecialization and overtraining in an attempt to make youth sports more safe. But, in reality that target audience is a small, elite, highly motivated group. The bigger problem is the rest of the population, in which too few children are physically active and participation in organized youth sports is decreasing. There are many reasons for that trajectory, but shouldn’t we be doing everything we can to reduce the barriers preventing young people from being more active? One of those barriers is a PPE system that is so riddled with inconsistencies that we have no idea as to its utility.

Certainly, bigger and more robust studies can be done, but there will be a long lead time to determine if a better PPE system might be effective. But there is a different approach. Instead of looking for needles with retrospective questions relying on patients’ and parents’ memories, why not use AI to mine patients’ old records for any language that may be buried in the history that could raise a yellow flag. Of course not every significant episode of syncope results in a chart entry. But, if we can make EMRs do our bidding instead being a thorn in our sides, records from long-forgotten episodes at an urgent care center while on vacation should merge with patients global record and light up when AI goes hunting.

If we can get our act together, the process that my teenage buddies and I considered a joke could become an efficient and possibly life-saving exercise.
 

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

A story in a recent edition of this newspaper reported on a disturbing, but not surprising, study by a third-year pediatric resident at the University of California, Davis, School of Medicine. Looking at just the Preparticipaton Physical Evaluations (PPEs) she could find at her institution, Tammy Ng, MD, found that only slightly more than a quarter “addressed all the criteria” on the American Academy of Pediatrics (AAP) standardized form. Although more than half included inquiries about respiratory symptoms, less than half contained questions about a cardiovascular history. The lack of consistency across all the forms reviewed was the most dramatic finding.

Having participated in more than my share of PPEs as a school physician, a primary care pediatrician, and a multi-sport high school and college athlete, I was not surprised by Dr. Ng’s findings. In high school my teammates and I considered our trip to see Old Doctor Hinds (not his real name) in the second week of August “a joke.” A few of us with “white coat” hypertension, like myself, had to be settled down and have our blood pressure retaken. But other than that wrinkle, we all passed. The football coach had his own eyeball screening tool and wouldn’t allow kids he thought were too small to play football.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff


Reading this study rekindled a question that surfaced every sports season as I faced days of looking at forms, many of them fished out of backpacks in a crumbled mass. I squeezed in new patients or old patients who were out of date on their physicals, not wanting any youngster to miss out on the politically important first practice of the pre-season. Why was I doing it? What was my goal? In more than four hundred thousand office visit encounters, I had never knowingly missed a case that resulted in a sudden sports-related death. Where was the evidence that PPEs had any protective value? Now a third-year pediatric resident is bold enough to tell us that we have done such a sloppy job of collecting data that we aren’t anywhere close to having the raw material with which to answer my decades-old questions and concerns.

Has our needles-in-the-haystack strategy saved any lives? I suspect a few of you can describe scenarios in which asking the right question of the right person at the right time prevented a sports-related sudden death. But, looking at bigger picture, what were the downsides for the entire population with a system in which those questions weren’t asked?

How many young people didn’t play a sport because their parents couldn’t afford the doctor visit or maintain a family structure that would allow them to find the lost form and drive it to the doctor’s office on Friday afternoon. Not every athletic director or physician’s staff is flexible or sympathetic enough to deal with that level of family dysfunction.

The AAP has recently focused its attention on the problems associated with overspecialization and overtraining in an attempt to make youth sports more safe. But, in reality that target audience is a small, elite, highly motivated group. The bigger problem is the rest of the population, in which too few children are physically active and participation in organized youth sports is decreasing. There are many reasons for that trajectory, but shouldn’t we be doing everything we can to reduce the barriers preventing young people from being more active? One of those barriers is a PPE system that is so riddled with inconsistencies that we have no idea as to its utility.

Certainly, bigger and more robust studies can be done, but there will be a long lead time to determine if a better PPE system might be effective. But there is a different approach. Instead of looking for needles with retrospective questions relying on patients’ and parents’ memories, why not use AI to mine patients’ old records for any language that may be buried in the history that could raise a yellow flag. Of course not every significant episode of syncope results in a chart entry. But, if we can make EMRs do our bidding instead being a thorn in our sides, records from long-forgotten episodes at an urgent care center while on vacation should merge with patients global record and light up when AI goes hunting.

If we can get our act together, the process that my teenage buddies and I considered a joke could become an efficient and possibly life-saving exercise.
 

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The Inconsistency of Preparticipation Sports Evaluations Raises Issues About Their Utility

Article Type
Changed
Tue, 05/07/2024 - 15:15

TORONTO — There is little consistency in the elements and types of information captured in preparticipation physical evaluations (PPE) for sports among school-aged children, which is complicating efforts to determine if they have value, according to a study presented at the Pediatric Academic Societies annual meeting.

The study concept developed when Tammy Ng, MD, a third-year resident in pediatrics at the University of California, Davis, School of Medicine in Sacramento, was surprised to learn that the American Academy of Pediatrics (AAP) had been issuing a standard-of-care PPE for decades.

Dr. Ng had a long-standing interest in pediatric sports medicine and thought that if she was unfamiliar with this form, which was first developed by the AAP in the 1990s in collaboration with other professional organizations, there must be others who were unaware of this resource.

Assuming that this collaborative effort led by the AAP could serve as a standard of care, Dr. Ng evaluated whether PPEs at her own institution were capturing similar information.

In the most recent (5th) edition of the PPE, which was released in 2019 and is available online, medical history is elicited for numerous organ systems relevant to risk. The questions are not directed to any specific sport; the form does not even provide a question about which sports are being considered.
 

Little Consistency

In evaluating whether PPEs completed at her institution in the previous year elicited similar information, Dr. Ng sought to match 25 elements of patient history from the AAP form to questions posed in the PPEs completed at her institution, some of which had been supplied by school or sports organizations.

Of the 365 PPE forms completed at Dr. Ng’s institution that met study criteria, only 28.6% addressed all 25 elements in the AAP form (range, 0%-78%). Although more than half asked specifically about a history of respiratory symptoms, fewer than half included inquiries about cardiovascular history. There was also little consistency in the capture of information about other relevant medical history.

According to Dr. Ng, these low percentages were observed even when liberally awarding credit. For one example, she said forms that asked any question about syncope with exercise were credited with seeking information about cardiovascular health even though a yes-or-no response might not be helpful.

“We did not distinguish between syncope before or after exercise and this is relevant,” Dr. Ng said. “Syncope during exercise is more likely to be a predictor of sudden cardiac death, whereas syncope after exercise is more likely to be a vasovagal response to exertion.”

Of the 365 PPEs evaluated, about half were completed by pediatricians and half by family medicine clinicians. The average age of the children was about 14 years. Sixty-three percent were male. Only one third of the forms documented the sport for which a pre-participation screen was being submitted.

While almost all states now require PPEs for children considering participation in sports, few specify what information should be elicited, according to Dr. Ng. She further noted that no major study has shown that PPEs have any role in preventing morbidity or mortality related to sports participation.
 

 

 

Does Heterogeneity Negate Worth?

With such diversity across PPEs, evaluating their role is difficult. For example, with such heterogeneity among forms for the information elicited, there is no reasonable approach for testing their sensitivity in predicting medical complications.

Dr. Ng noted that school-created forms were just as likely as forms from other sources to diverge from the AAP-endorsed PPE and ignore organ systems relevant to risk of medical complications. Yet, if the answer is to use the AAP form, Dr. Ng noted that the first sentence on the form reads, “This form should be placed in the athlete’s medical file and should not be shared with schools or sports organizations.”

Although Dr. Ng acknowledged that providing completed PPEs to third parties raises questions about privacy, she questioned how the information should be used by children, parents, and sports organization administrators for discussing risks if not shared.

This concern was seconded in the discussion following Dr. Ng’s presentation.

“You might be signing off on sports participation, but is this for cheerleading or for football?” asked Daniel C. Worthington, MD, a pediatrician in private practice who has a clinical appointment at Case Western Reserve University School of Medicine, Cleveland. “This makes a huge difference when evaluating if participation is safe.”

He has no issue with completing PPEs for the goal of keeping children safe, but he focused on the inconsistency of how information is collected and distributed.

“The major question is: Does it make any difference?” said Dr. Worthington, referring to the completion of PPEs.

Another participant in the discussion that followed Dr. Ng’s presentation pointed out that the urgent care office in a mall near to his office offers a completed PPE form for a price of $20. In their recommendations, the AAP suggests PPEs be completed by the individual’s primary care physician during a well visit, according to Dr. Ng.

Dr. Ng indicated that PPEs and their purpose deserve a closer look. Based on her data, it is reasonable to assume that the priority for some – whether those requiring or those completing the form — is completing the task rather than meaningful screening of risk.

Dr. Ng and Dr. Worthington report no potential conflicts of interest.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

TORONTO — There is little consistency in the elements and types of information captured in preparticipation physical evaluations (PPE) for sports among school-aged children, which is complicating efforts to determine if they have value, according to a study presented at the Pediatric Academic Societies annual meeting.

The study concept developed when Tammy Ng, MD, a third-year resident in pediatrics at the University of California, Davis, School of Medicine in Sacramento, was surprised to learn that the American Academy of Pediatrics (AAP) had been issuing a standard-of-care PPE for decades.

Dr. Ng had a long-standing interest in pediatric sports medicine and thought that if she was unfamiliar with this form, which was first developed by the AAP in the 1990s in collaboration with other professional organizations, there must be others who were unaware of this resource.

Assuming that this collaborative effort led by the AAP could serve as a standard of care, Dr. Ng evaluated whether PPEs at her own institution were capturing similar information.

In the most recent (5th) edition of the PPE, which was released in 2019 and is available online, medical history is elicited for numerous organ systems relevant to risk. The questions are not directed to any specific sport; the form does not even provide a question about which sports are being considered.
 

Little Consistency

In evaluating whether PPEs completed at her institution in the previous year elicited similar information, Dr. Ng sought to match 25 elements of patient history from the AAP form to questions posed in the PPEs completed at her institution, some of which had been supplied by school or sports organizations.

Of the 365 PPE forms completed at Dr. Ng’s institution that met study criteria, only 28.6% addressed all 25 elements in the AAP form (range, 0%-78%). Although more than half asked specifically about a history of respiratory symptoms, fewer than half included inquiries about cardiovascular history. There was also little consistency in the capture of information about other relevant medical history.

According to Dr. Ng, these low percentages were observed even when liberally awarding credit. For one example, she said forms that asked any question about syncope with exercise were credited with seeking information about cardiovascular health even though a yes-or-no response might not be helpful.

“We did not distinguish between syncope before or after exercise and this is relevant,” Dr. Ng said. “Syncope during exercise is more likely to be a predictor of sudden cardiac death, whereas syncope after exercise is more likely to be a vasovagal response to exertion.”

Of the 365 PPEs evaluated, about half were completed by pediatricians and half by family medicine clinicians. The average age of the children was about 14 years. Sixty-three percent were male. Only one third of the forms documented the sport for which a pre-participation screen was being submitted.

While almost all states now require PPEs for children considering participation in sports, few specify what information should be elicited, according to Dr. Ng. She further noted that no major study has shown that PPEs have any role in preventing morbidity or mortality related to sports participation.
 

 

 

Does Heterogeneity Negate Worth?

With such diversity across PPEs, evaluating their role is difficult. For example, with such heterogeneity among forms for the information elicited, there is no reasonable approach for testing their sensitivity in predicting medical complications.

Dr. Ng noted that school-created forms were just as likely as forms from other sources to diverge from the AAP-endorsed PPE and ignore organ systems relevant to risk of medical complications. Yet, if the answer is to use the AAP form, Dr. Ng noted that the first sentence on the form reads, “This form should be placed in the athlete’s medical file and should not be shared with schools or sports organizations.”

Although Dr. Ng acknowledged that providing completed PPEs to third parties raises questions about privacy, she questioned how the information should be used by children, parents, and sports organization administrators for discussing risks if not shared.

This concern was seconded in the discussion following Dr. Ng’s presentation.

“You might be signing off on sports participation, but is this for cheerleading or for football?” asked Daniel C. Worthington, MD, a pediatrician in private practice who has a clinical appointment at Case Western Reserve University School of Medicine, Cleveland. “This makes a huge difference when evaluating if participation is safe.”

He has no issue with completing PPEs for the goal of keeping children safe, but he focused on the inconsistency of how information is collected and distributed.

“The major question is: Does it make any difference?” said Dr. Worthington, referring to the completion of PPEs.

Another participant in the discussion that followed Dr. Ng’s presentation pointed out that the urgent care office in a mall near to his office offers a completed PPE form for a price of $20. In their recommendations, the AAP suggests PPEs be completed by the individual’s primary care physician during a well visit, according to Dr. Ng.

Dr. Ng indicated that PPEs and their purpose deserve a closer look. Based on her data, it is reasonable to assume that the priority for some – whether those requiring or those completing the form — is completing the task rather than meaningful screening of risk.

Dr. Ng and Dr. Worthington report no potential conflicts of interest.

TORONTO — There is little consistency in the elements and types of information captured in preparticipation physical evaluations (PPE) for sports among school-aged children, which is complicating efforts to determine if they have value, according to a study presented at the Pediatric Academic Societies annual meeting.

The study concept developed when Tammy Ng, MD, a third-year resident in pediatrics at the University of California, Davis, School of Medicine in Sacramento, was surprised to learn that the American Academy of Pediatrics (AAP) had been issuing a standard-of-care PPE for decades.

Dr. Ng had a long-standing interest in pediatric sports medicine and thought that if she was unfamiliar with this form, which was first developed by the AAP in the 1990s in collaboration with other professional organizations, there must be others who were unaware of this resource.

Assuming that this collaborative effort led by the AAP could serve as a standard of care, Dr. Ng evaluated whether PPEs at her own institution were capturing similar information.

In the most recent (5th) edition of the PPE, which was released in 2019 and is available online, medical history is elicited for numerous organ systems relevant to risk. The questions are not directed to any specific sport; the form does not even provide a question about which sports are being considered.
 

Little Consistency

In evaluating whether PPEs completed at her institution in the previous year elicited similar information, Dr. Ng sought to match 25 elements of patient history from the AAP form to questions posed in the PPEs completed at her institution, some of which had been supplied by school or sports organizations.

Of the 365 PPE forms completed at Dr. Ng’s institution that met study criteria, only 28.6% addressed all 25 elements in the AAP form (range, 0%-78%). Although more than half asked specifically about a history of respiratory symptoms, fewer than half included inquiries about cardiovascular history. There was also little consistency in the capture of information about other relevant medical history.

According to Dr. Ng, these low percentages were observed even when liberally awarding credit. For one example, she said forms that asked any question about syncope with exercise were credited with seeking information about cardiovascular health even though a yes-or-no response might not be helpful.

“We did not distinguish between syncope before or after exercise and this is relevant,” Dr. Ng said. “Syncope during exercise is more likely to be a predictor of sudden cardiac death, whereas syncope after exercise is more likely to be a vasovagal response to exertion.”

Of the 365 PPEs evaluated, about half were completed by pediatricians and half by family medicine clinicians. The average age of the children was about 14 years. Sixty-three percent were male. Only one third of the forms documented the sport for which a pre-participation screen was being submitted.

While almost all states now require PPEs for children considering participation in sports, few specify what information should be elicited, according to Dr. Ng. She further noted that no major study has shown that PPEs have any role in preventing morbidity or mortality related to sports participation.
 

 

 

Does Heterogeneity Negate Worth?

With such diversity across PPEs, evaluating their role is difficult. For example, with such heterogeneity among forms for the information elicited, there is no reasonable approach for testing their sensitivity in predicting medical complications.

Dr. Ng noted that school-created forms were just as likely as forms from other sources to diverge from the AAP-endorsed PPE and ignore organ systems relevant to risk of medical complications. Yet, if the answer is to use the AAP form, Dr. Ng noted that the first sentence on the form reads, “This form should be placed in the athlete’s medical file and should not be shared with schools or sports organizations.”

Although Dr. Ng acknowledged that providing completed PPEs to third parties raises questions about privacy, she questioned how the information should be used by children, parents, and sports organization administrators for discussing risks if not shared.

This concern was seconded in the discussion following Dr. Ng’s presentation.

“You might be signing off on sports participation, but is this for cheerleading or for football?” asked Daniel C. Worthington, MD, a pediatrician in private practice who has a clinical appointment at Case Western Reserve University School of Medicine, Cleveland. “This makes a huge difference when evaluating if participation is safe.”

He has no issue with completing PPEs for the goal of keeping children safe, but he focused on the inconsistency of how information is collected and distributed.

“The major question is: Does it make any difference?” said Dr. Worthington, referring to the completion of PPEs.

Another participant in the discussion that followed Dr. Ng’s presentation pointed out that the urgent care office in a mall near to his office offers a completed PPE form for a price of $20. In their recommendations, the AAP suggests PPEs be completed by the individual’s primary care physician during a well visit, according to Dr. Ng.

Dr. Ng indicated that PPEs and their purpose deserve a closer look. Based on her data, it is reasonable to assume that the priority for some – whether those requiring or those completing the form — is completing the task rather than meaningful screening of risk.

Dr. Ng and Dr. Worthington report no potential conflicts of interest.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM PAS 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Discovering the Impact of the Injury Prevention Program on Childhood Safety

Article Type
Changed
Fri, 04/19/2024 - 17:59

 

TOPLINE:

The Injury Prevention Program (TIPP), supported by pediatric residents and equipped with parent-focused tools, effectively reduced reported childhood injuries over the first 2 years of life.

METHODOLOGY:

  • The American Academy of Pediatrics designed TIPP in 1983 to aid pediatricians in preventing unintentional injuries among children. TIPP’s effectiveness in reducing childhood injuries had not been formally evaluated in a randomized trial prior to this study.
  • TIPP implementation included developmentally based safety counseling and distribution of age-appropriate safety materials to parents.
  • A total of 781 parent-infant dyads participated, with the study population primarily consisting of low-income, Hispanic, and non-Hispanic Black families.
  • Parent-reported injuries were tracked at each well-child check from 2 to 24 months, with the study adjusting for baseline child, parent, and household factors.

TAKEAWAY:

  • TIPP led to a significant reduction in reported childhood injuries over 2 years with adjusted odds ratios of 0.77 (0.66-0.91), 0.60 (0.44-0.82), 0.32 (0.16-0.62), 0.26 (0.12-0.53), and 0.27 (0.14-0.52) at 4, 6, 12, 18, and 24 months, respectively.
  • The study highlights the need for further research to explore TIPP’s impact on serious injuries and to identify optimal implementation strategies in busy clinical settings.
  • IN PRACTICE:

“This program includes a developmentally based safety counseling schedule that guides what materials (safety sheets and an age-appropriate Framingham safety survey) to ask about risk behaviors. For the age group relevant here, there are pediatric patient handouts for parents of children who are aged 0 to 6 months, 6 to 12 months, and 1 to 2 years, and they review safety for falls, motor vehicles, firearms, drowning, poisoning, choking, and burns”, wrote the authors of the study.

SOURCE:

The study was led by Eliana M. Perrin, MD, MPH, Department of Pediatrics, Johns Hopkins University Schools of Medicine and Nursing, Baltimore, Maryland. It was published online in Pediatrics.

LIMITATIONS:

Further research is necessary to assess TIPP’s effect on serious injuries and to determine effective implementation strategies in various clinical settings.

DISCLOSURES:

The study was supported by grants from the Eunice Kennedy Shriver Institute of Child Health and Development, with supplemental funding from the Centers for Disease Control and Prevention, and the Office of Behavioral and Social Sciences Research.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The Injury Prevention Program (TIPP), supported by pediatric residents and equipped with parent-focused tools, effectively reduced reported childhood injuries over the first 2 years of life.

METHODOLOGY:

  • The American Academy of Pediatrics designed TIPP in 1983 to aid pediatricians in preventing unintentional injuries among children. TIPP’s effectiveness in reducing childhood injuries had not been formally evaluated in a randomized trial prior to this study.
  • TIPP implementation included developmentally based safety counseling and distribution of age-appropriate safety materials to parents.
  • A total of 781 parent-infant dyads participated, with the study population primarily consisting of low-income, Hispanic, and non-Hispanic Black families.
  • Parent-reported injuries were tracked at each well-child check from 2 to 24 months, with the study adjusting for baseline child, parent, and household factors.

TAKEAWAY:

  • TIPP led to a significant reduction in reported childhood injuries over 2 years with adjusted odds ratios of 0.77 (0.66-0.91), 0.60 (0.44-0.82), 0.32 (0.16-0.62), 0.26 (0.12-0.53), and 0.27 (0.14-0.52) at 4, 6, 12, 18, and 24 months, respectively.
  • The study highlights the need for further research to explore TIPP’s impact on serious injuries and to identify optimal implementation strategies in busy clinical settings.
  • IN PRACTICE:

“This program includes a developmentally based safety counseling schedule that guides what materials (safety sheets and an age-appropriate Framingham safety survey) to ask about risk behaviors. For the age group relevant here, there are pediatric patient handouts for parents of children who are aged 0 to 6 months, 6 to 12 months, and 1 to 2 years, and they review safety for falls, motor vehicles, firearms, drowning, poisoning, choking, and burns”, wrote the authors of the study.

SOURCE:

The study was led by Eliana M. Perrin, MD, MPH, Department of Pediatrics, Johns Hopkins University Schools of Medicine and Nursing, Baltimore, Maryland. It was published online in Pediatrics.

LIMITATIONS:

Further research is necessary to assess TIPP’s effect on serious injuries and to determine effective implementation strategies in various clinical settings.

DISCLOSURES:

The study was supported by grants from the Eunice Kennedy Shriver Institute of Child Health and Development, with supplemental funding from the Centers for Disease Control and Prevention, and the Office of Behavioral and Social Sciences Research.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE:

The Injury Prevention Program (TIPP), supported by pediatric residents and equipped with parent-focused tools, effectively reduced reported childhood injuries over the first 2 years of life.

METHODOLOGY:

  • The American Academy of Pediatrics designed TIPP in 1983 to aid pediatricians in preventing unintentional injuries among children. TIPP’s effectiveness in reducing childhood injuries had not been formally evaluated in a randomized trial prior to this study.
  • TIPP implementation included developmentally based safety counseling and distribution of age-appropriate safety materials to parents.
  • A total of 781 parent-infant dyads participated, with the study population primarily consisting of low-income, Hispanic, and non-Hispanic Black families.
  • Parent-reported injuries were tracked at each well-child check from 2 to 24 months, with the study adjusting for baseline child, parent, and household factors.

TAKEAWAY:

  • TIPP led to a significant reduction in reported childhood injuries over 2 years with adjusted odds ratios of 0.77 (0.66-0.91), 0.60 (0.44-0.82), 0.32 (0.16-0.62), 0.26 (0.12-0.53), and 0.27 (0.14-0.52) at 4, 6, 12, 18, and 24 months, respectively.
  • The study highlights the need for further research to explore TIPP’s impact on serious injuries and to identify optimal implementation strategies in busy clinical settings.
  • IN PRACTICE:

“This program includes a developmentally based safety counseling schedule that guides what materials (safety sheets and an age-appropriate Framingham safety survey) to ask about risk behaviors. For the age group relevant here, there are pediatric patient handouts for parents of children who are aged 0 to 6 months, 6 to 12 months, and 1 to 2 years, and they review safety for falls, motor vehicles, firearms, drowning, poisoning, choking, and burns”, wrote the authors of the study.

SOURCE:

The study was led by Eliana M. Perrin, MD, MPH, Department of Pediatrics, Johns Hopkins University Schools of Medicine and Nursing, Baltimore, Maryland. It was published online in Pediatrics.

LIMITATIONS:

Further research is necessary to assess TIPP’s effect on serious injuries and to determine effective implementation strategies in various clinical settings.

DISCLOSURES:

The study was supported by grants from the Eunice Kennedy Shriver Institute of Child Health and Development, with supplemental funding from the Centers for Disease Control and Prevention, and the Office of Behavioral and Social Sciences Research.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

USPSTF: Insufficient Evidence for Primary Care Interventions to Prevent Child Maltreatment

Article Type
Changed
Wed, 03/20/2024 - 12:08

While primary care physicians are uniquely positioned to identify mistreated minors, there is insufficient evidence of benefits and harms to support primary care interventions to prevent maltreatment in children who have no indicative signs or symptoms. That is the conclusion of the US Preventive Services Task Force (USPSTF) in an update of its 2018 statement published in JAMA Network Open.

This gap, however, might be partially filled by addressing in young patients the known social determinants of health such as economic stability, food, shelter, and healthcare access. The USPSTF statement is based on a simultaneously published evidence review and synthesis compiled by Meera Viswanathan, PhD, of the RTI International-University of North Carolina at Chapel Hill Evidence-Based Practice Center in Triangle Park, NC, and colleagues.

Dr. Meera Viswanathan


The review included 14,355 participants in 25 trials, of which 23 included home visits. It measured such things as direct reports to Child Protective Services or removal of children from the home and proxy measures of abuse or neglect such as injury, emergency department visits, and hospitalizations. In addition, it looked at behavioral, developmental, emotional, mental or physical health and well-being, mortality, and harms.

More than 50% of the studies analyzed consisted of children with no prior reports of maltreatment. In addition to limited and inconsistent findings, the researchers noted wide variance in screening, identifying, and reporting child maltreatment to authorities, including variations by race or ethnicity, as well as wide variance in the accuracy of screening instruments.

“Contextual evidence pointed to the potential for bias or inaccuracy in screening, identification, and reporting of child maltreatment but also highlighted the importance of addressing social determinants when intervening to prevent child maltreatment,” Dr. Viswanathan’s group wrote.

Dr. Michael J. Barry


The USPSTF panel, chaired by Michael J. Barry, MD, of Harvard Medical School, Boston, Massachusetts (now immediate past chair of the Task Force), stressed that the current statement applies only to children with no signs of maltreatment: Those with direct signs should be assessed and appropriately reported.

A Common and Costly Problem

Child abuse or neglect is widespread and has long-lasting adverse effects. In 2021, the statement noted, Child Protective Services identified 600,000 children as abused or neglected, with 1821 related deaths. Most (76%) experienced neglect, but many were subjected to physical abuse (16%), sexual abuse (10%), and sex trafficking (0.2%). Of the 1820 who died, 78% experienced neglect and 43% experienced physical abuse alone or combined with maltreatment such as neglect and psychological abuse.

Benefits aside, among the potential harms of intervention, the USPSTF noted, is family stigma and bias toward non-White and low-income groups. There may be a greater probability of clinicians’ disproportionately reporting abuse for the children of Black, Hispanic, indigenous, and one-parent households. Some studies indicate that more cases of maltreatment are missed in White children, the review authors noted.

“Additional evidence is needed to clarify potential linkages between improvements in social determinants of health and child maltreatment prevention,” the USPSTF panelists concluded. They acknowledged that their recommendation does not address the effectiveness of interventions such as home visits to improve family well-being.

In an accompanying editorial Samantha Schilling, MD, MSHP, of the Department of Pediatrics at the University of North Carolina at Chapel Hill, and colleagues from the Children’s Hospital of Philadelphia in Pennsylvania admitted they were “disheartened, but not surprised” at the USPSTF’s conclusions and urged that prevention measures be continued. “It is not yet time to wave the white flag of surrender and abandon primary care–based efforts to mitigate risks for child abuse and neglect.

Dr. Samantha Schilling


They sent a heartfelt message to primary care doctors: “Know this: while additional evidence is amassed, do not stop your ongoing efforts to protect vulnerable children. You are an important component of child maltreatment prevention, although your actions and support cannot be delivered (or measured) in isolation.”

Dr. Schilling and associates argued that insufficient evidence does not mean that primary care prevention efforts are ineffective, only that evidence is lacking. They pointed out that proximal outcomes along a causal pathway have been used to assess the effectiveness of preventive measures and should be considered in this context. “For example, based on evidence that counseling about minimizing exposure to UV radiation is associated with a moderate increase in use of sunscreen protection, the USPSTF recommends that counseling be provided to certain populations,” they wrote. “The USPSTF did not require direct evidence that counseling decreases skin cancer.”

More high-quality research is needed, as the USPSTF recognized. “Given the inadequacy of the current gold standard measures of child maltreatment, proximal outcomes on the complex, multifactorial, causal pathway to child abuse and neglect should be considered,” the commentators wrote.

The commentators also acknowledged that patients’ caregivers often struggle to do their best with sparse resources and that resources such as food and housing, treatment for substance use and mental health disorders, appropriate strategies to manage typical child behavior, and affordable child care too often fall short.

They argued, therefore, that consequential prevention is not possible without sustained investment in policies and programs that provide tangible support to families, reduce childhood poverty, and target relevant risk factors.

The Agency for Healthcare Research and Quality of the US Department of Health and Human Services supports the operations of the USPSTF. Dr. Barry reported grants from Healthwise, a nonprofit organization, outside of the submitted work. Dr. Silverstein reported receiving a research grant on approaches to child maltreatment prevention. Dr. Lee reported grants from the National Institute on Aging. The evidence review was supported by a grant from the Agency for Healthcare Research. Dr. Viswanathan and colleagues disclosed no conflicts of interest. Dr. Wood reported grants from the Annie E. Casey Foundation outside of the submitted work. Dr. Christian reported personal fees from multiple government agencies and legal firms and provides medical-legal expert work in child abuse cases outside of the submitted work.

Publications
Topics
Sections

While primary care physicians are uniquely positioned to identify mistreated minors, there is insufficient evidence of benefits and harms to support primary care interventions to prevent maltreatment in children who have no indicative signs or symptoms. That is the conclusion of the US Preventive Services Task Force (USPSTF) in an update of its 2018 statement published in JAMA Network Open.

This gap, however, might be partially filled by addressing in young patients the known social determinants of health such as economic stability, food, shelter, and healthcare access. The USPSTF statement is based on a simultaneously published evidence review and synthesis compiled by Meera Viswanathan, PhD, of the RTI International-University of North Carolina at Chapel Hill Evidence-Based Practice Center in Triangle Park, NC, and colleagues.

Dr. Meera Viswanathan


The review included 14,355 participants in 25 trials, of which 23 included home visits. It measured such things as direct reports to Child Protective Services or removal of children from the home and proxy measures of abuse or neglect such as injury, emergency department visits, and hospitalizations. In addition, it looked at behavioral, developmental, emotional, mental or physical health and well-being, mortality, and harms.

More than 50% of the studies analyzed consisted of children with no prior reports of maltreatment. In addition to limited and inconsistent findings, the researchers noted wide variance in screening, identifying, and reporting child maltreatment to authorities, including variations by race or ethnicity, as well as wide variance in the accuracy of screening instruments.

“Contextual evidence pointed to the potential for bias or inaccuracy in screening, identification, and reporting of child maltreatment but also highlighted the importance of addressing social determinants when intervening to prevent child maltreatment,” Dr. Viswanathan’s group wrote.

Dr. Michael J. Barry


The USPSTF panel, chaired by Michael J. Barry, MD, of Harvard Medical School, Boston, Massachusetts (now immediate past chair of the Task Force), stressed that the current statement applies only to children with no signs of maltreatment: Those with direct signs should be assessed and appropriately reported.

A Common and Costly Problem

Child abuse or neglect is widespread and has long-lasting adverse effects. In 2021, the statement noted, Child Protective Services identified 600,000 children as abused or neglected, with 1821 related deaths. Most (76%) experienced neglect, but many were subjected to physical abuse (16%), sexual abuse (10%), and sex trafficking (0.2%). Of the 1820 who died, 78% experienced neglect and 43% experienced physical abuse alone or combined with maltreatment such as neglect and psychological abuse.

Benefits aside, among the potential harms of intervention, the USPSTF noted, is family stigma and bias toward non-White and low-income groups. There may be a greater probability of clinicians’ disproportionately reporting abuse for the children of Black, Hispanic, indigenous, and one-parent households. Some studies indicate that more cases of maltreatment are missed in White children, the review authors noted.

“Additional evidence is needed to clarify potential linkages between improvements in social determinants of health and child maltreatment prevention,” the USPSTF panelists concluded. They acknowledged that their recommendation does not address the effectiveness of interventions such as home visits to improve family well-being.

In an accompanying editorial Samantha Schilling, MD, MSHP, of the Department of Pediatrics at the University of North Carolina at Chapel Hill, and colleagues from the Children’s Hospital of Philadelphia in Pennsylvania admitted they were “disheartened, but not surprised” at the USPSTF’s conclusions and urged that prevention measures be continued. “It is not yet time to wave the white flag of surrender and abandon primary care–based efforts to mitigate risks for child abuse and neglect.

Dr. Samantha Schilling


They sent a heartfelt message to primary care doctors: “Know this: while additional evidence is amassed, do not stop your ongoing efforts to protect vulnerable children. You are an important component of child maltreatment prevention, although your actions and support cannot be delivered (or measured) in isolation.”

Dr. Schilling and associates argued that insufficient evidence does not mean that primary care prevention efforts are ineffective, only that evidence is lacking. They pointed out that proximal outcomes along a causal pathway have been used to assess the effectiveness of preventive measures and should be considered in this context. “For example, based on evidence that counseling about minimizing exposure to UV radiation is associated with a moderate increase in use of sunscreen protection, the USPSTF recommends that counseling be provided to certain populations,” they wrote. “The USPSTF did not require direct evidence that counseling decreases skin cancer.”

More high-quality research is needed, as the USPSTF recognized. “Given the inadequacy of the current gold standard measures of child maltreatment, proximal outcomes on the complex, multifactorial, causal pathway to child abuse and neglect should be considered,” the commentators wrote.

The commentators also acknowledged that patients’ caregivers often struggle to do their best with sparse resources and that resources such as food and housing, treatment for substance use and mental health disorders, appropriate strategies to manage typical child behavior, and affordable child care too often fall short.

They argued, therefore, that consequential prevention is not possible without sustained investment in policies and programs that provide tangible support to families, reduce childhood poverty, and target relevant risk factors.

The Agency for Healthcare Research and Quality of the US Department of Health and Human Services supports the operations of the USPSTF. Dr. Barry reported grants from Healthwise, a nonprofit organization, outside of the submitted work. Dr. Silverstein reported receiving a research grant on approaches to child maltreatment prevention. Dr. Lee reported grants from the National Institute on Aging. The evidence review was supported by a grant from the Agency for Healthcare Research. Dr. Viswanathan and colleagues disclosed no conflicts of interest. Dr. Wood reported grants from the Annie E. Casey Foundation outside of the submitted work. Dr. Christian reported personal fees from multiple government agencies and legal firms and provides medical-legal expert work in child abuse cases outside of the submitted work.

While primary care physicians are uniquely positioned to identify mistreated minors, there is insufficient evidence of benefits and harms to support primary care interventions to prevent maltreatment in children who have no indicative signs or symptoms. That is the conclusion of the US Preventive Services Task Force (USPSTF) in an update of its 2018 statement published in JAMA Network Open.

This gap, however, might be partially filled by addressing in young patients the known social determinants of health such as economic stability, food, shelter, and healthcare access. The USPSTF statement is based on a simultaneously published evidence review and synthesis compiled by Meera Viswanathan, PhD, of the RTI International-University of North Carolina at Chapel Hill Evidence-Based Practice Center in Triangle Park, NC, and colleagues.

Dr. Meera Viswanathan


The review included 14,355 participants in 25 trials, of which 23 included home visits. It measured such things as direct reports to Child Protective Services or removal of children from the home and proxy measures of abuse or neglect such as injury, emergency department visits, and hospitalizations. In addition, it looked at behavioral, developmental, emotional, mental or physical health and well-being, mortality, and harms.

More than 50% of the studies analyzed consisted of children with no prior reports of maltreatment. In addition to limited and inconsistent findings, the researchers noted wide variance in screening, identifying, and reporting child maltreatment to authorities, including variations by race or ethnicity, as well as wide variance in the accuracy of screening instruments.

“Contextual evidence pointed to the potential for bias or inaccuracy in screening, identification, and reporting of child maltreatment but also highlighted the importance of addressing social determinants when intervening to prevent child maltreatment,” Dr. Viswanathan’s group wrote.

Dr. Michael J. Barry


The USPSTF panel, chaired by Michael J. Barry, MD, of Harvard Medical School, Boston, Massachusetts (now immediate past chair of the Task Force), stressed that the current statement applies only to children with no signs of maltreatment: Those with direct signs should be assessed and appropriately reported.

A Common and Costly Problem

Child abuse or neglect is widespread and has long-lasting adverse effects. In 2021, the statement noted, Child Protective Services identified 600,000 children as abused or neglected, with 1821 related deaths. Most (76%) experienced neglect, but many were subjected to physical abuse (16%), sexual abuse (10%), and sex trafficking (0.2%). Of the 1820 who died, 78% experienced neglect and 43% experienced physical abuse alone or combined with maltreatment such as neglect and psychological abuse.

Benefits aside, among the potential harms of intervention, the USPSTF noted, is family stigma and bias toward non-White and low-income groups. There may be a greater probability of clinicians’ disproportionately reporting abuse for the children of Black, Hispanic, indigenous, and one-parent households. Some studies indicate that more cases of maltreatment are missed in White children, the review authors noted.

“Additional evidence is needed to clarify potential linkages between improvements in social determinants of health and child maltreatment prevention,” the USPSTF panelists concluded. They acknowledged that their recommendation does not address the effectiveness of interventions such as home visits to improve family well-being.

In an accompanying editorial Samantha Schilling, MD, MSHP, of the Department of Pediatrics at the University of North Carolina at Chapel Hill, and colleagues from the Children’s Hospital of Philadelphia in Pennsylvania admitted they were “disheartened, but not surprised” at the USPSTF’s conclusions and urged that prevention measures be continued. “It is not yet time to wave the white flag of surrender and abandon primary care–based efforts to mitigate risks for child abuse and neglect.

Dr. Samantha Schilling


They sent a heartfelt message to primary care doctors: “Know this: while additional evidence is amassed, do not stop your ongoing efforts to protect vulnerable children. You are an important component of child maltreatment prevention, although your actions and support cannot be delivered (or measured) in isolation.”

Dr. Schilling and associates argued that insufficient evidence does not mean that primary care prevention efforts are ineffective, only that evidence is lacking. They pointed out that proximal outcomes along a causal pathway have been used to assess the effectiveness of preventive measures and should be considered in this context. “For example, based on evidence that counseling about minimizing exposure to UV radiation is associated with a moderate increase in use of sunscreen protection, the USPSTF recommends that counseling be provided to certain populations,” they wrote. “The USPSTF did not require direct evidence that counseling decreases skin cancer.”

More high-quality research is needed, as the USPSTF recognized. “Given the inadequacy of the current gold standard measures of child maltreatment, proximal outcomes on the complex, multifactorial, causal pathway to child abuse and neglect should be considered,” the commentators wrote.

The commentators also acknowledged that patients’ caregivers often struggle to do their best with sparse resources and that resources such as food and housing, treatment for substance use and mental health disorders, appropriate strategies to manage typical child behavior, and affordable child care too often fall short.

They argued, therefore, that consequential prevention is not possible without sustained investment in policies and programs that provide tangible support to families, reduce childhood poverty, and target relevant risk factors.

The Agency for Healthcare Research and Quality of the US Department of Health and Human Services supports the operations of the USPSTF. Dr. Barry reported grants from Healthwise, a nonprofit organization, outside of the submitted work. Dr. Silverstein reported receiving a research grant on approaches to child maltreatment prevention. Dr. Lee reported grants from the National Institute on Aging. The evidence review was supported by a grant from the Agency for Healthcare Research. Dr. Viswanathan and colleagues disclosed no conflicts of interest. Dr. Wood reported grants from the Annie E. Casey Foundation outside of the submitted work. Dr. Christian reported personal fees from multiple government agencies and legal firms and provides medical-legal expert work in child abuse cases outside of the submitted work.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM JAMA NETWORK OPEN

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Fatal and nonfatal injuries

Article Type
Changed
Wed, 11/22/2023 - 09:39

I suspect that, like me, you were saddened, but maybe not shocked, to learn that firearm-related fatalities have recently surpassed motor vehicle–related fatalities as the leading cause of death among children. For those of us living in Maine, this revelation came at a particularly difficult time. The body of the presumed shooter in the Lewiston massacre was found less than 10 miles from where I am writing you this letter. There is a good chance he may have been a former patient of mine, but I no longer have access to my records to confirm that.

This reshuffling at the top of the list of mortality causes is just one example of the shifting trends that have occurred in pediatric fatality statistics. In a recent analysis of the Centers for Disease Control and Prevention statistics published in Pediatrics investigators discovered that while, in general, fatal injuries have increased over the study period (2011-2021) nonfatal injuries have decreased.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

We should no longer be surprised to learn that firearm-related deaths increased more than 87%. Fatal drug poisoning was up 133% and suffocation-related deaths increased 12.5% over that 10-year period. Given this profile of fatalities, it shouldn’t surprise us that nonfatal injuries due to firearms, poisoning, and self-harm also increased.

However, nonfatal injuries in other broad categories decreased: falls were down 52.8%, overexertion 63%, struck by [something or someone] 47.3%, motor vehicle occupant 36.7%, and cut pierce 36.7%. Nonfatal drownings were unchanged.
 

Diverging trends

Fatal injuries are up and nonfatal injuries are down. What are we to make of these diverging trends? I suspect that when it comes to both firearms and drug poisonings, both fatal and nonfatal, children are now living in an environment in which the sheer volume of guns and drugs have grown the point, and will continue to grow, that contact and its consequences will continue to increase until we reach a saturation point at some unpredictable point in the future. There still may be some opportunities to curb the flow of drugs. But, I am afraid when it comes to firearms, that ship has sailed. We may have a chance to curb assault weapons, but hand guns have become ubiquitous to the point that they will continue to be a threat to children.

The increase in self-harm injuries is clearly a reflection of the increase in pediatric and adolescent mental health disturbances, which in turn is a reflection of the gloom hanging over the population in general.

But, what’s going on with the decrease in nonfatal injuries caused by falls, overexertion, struck by, and cut pierce? Is this a bit of sunshine in an otherwise cloudy picture? The authors of the paper see it as a reflection of our “public health interventions targeting pediatric safety partnered with technological advancement and legislative requirements.” Maybe when we are talking about booster seats and other automotive safety advancements. But I’m not so sure we should be too vigorous as we pat ourselves on the back.

On the other hand, aren’t these decreases in injuries related to activity just more evidence of our increasingly sedentary pediatric population? Falling off the couch seldom creates an injury that generates an ED statistic. Myopia and obesity related to excess screen time doesn’t trigger data points in this study. Overexertion injuries are down. We already know the consequences of underexertion are up.

I’m not sure we need to cut back on our efforts at injury prevention but I worry that we may run the risk of discouraging healthy activity if we aren’t careful with our voices of caution.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Publications
Topics
Sections

I suspect that, like me, you were saddened, but maybe not shocked, to learn that firearm-related fatalities have recently surpassed motor vehicle–related fatalities as the leading cause of death among children. For those of us living in Maine, this revelation came at a particularly difficult time. The body of the presumed shooter in the Lewiston massacre was found less than 10 miles from where I am writing you this letter. There is a good chance he may have been a former patient of mine, but I no longer have access to my records to confirm that.

This reshuffling at the top of the list of mortality causes is just one example of the shifting trends that have occurred in pediatric fatality statistics. In a recent analysis of the Centers for Disease Control and Prevention statistics published in Pediatrics investigators discovered that while, in general, fatal injuries have increased over the study period (2011-2021) nonfatal injuries have decreased.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

We should no longer be surprised to learn that firearm-related deaths increased more than 87%. Fatal drug poisoning was up 133% and suffocation-related deaths increased 12.5% over that 10-year period. Given this profile of fatalities, it shouldn’t surprise us that nonfatal injuries due to firearms, poisoning, and self-harm also increased.

However, nonfatal injuries in other broad categories decreased: falls were down 52.8%, overexertion 63%, struck by [something or someone] 47.3%, motor vehicle occupant 36.7%, and cut pierce 36.7%. Nonfatal drownings were unchanged.
 

Diverging trends

Fatal injuries are up and nonfatal injuries are down. What are we to make of these diverging trends? I suspect that when it comes to both firearms and drug poisonings, both fatal and nonfatal, children are now living in an environment in which the sheer volume of guns and drugs have grown the point, and will continue to grow, that contact and its consequences will continue to increase until we reach a saturation point at some unpredictable point in the future. There still may be some opportunities to curb the flow of drugs. But, I am afraid when it comes to firearms, that ship has sailed. We may have a chance to curb assault weapons, but hand guns have become ubiquitous to the point that they will continue to be a threat to children.

The increase in self-harm injuries is clearly a reflection of the increase in pediatric and adolescent mental health disturbances, which in turn is a reflection of the gloom hanging over the population in general.

But, what’s going on with the decrease in nonfatal injuries caused by falls, overexertion, struck by, and cut pierce? Is this a bit of sunshine in an otherwise cloudy picture? The authors of the paper see it as a reflection of our “public health interventions targeting pediatric safety partnered with technological advancement and legislative requirements.” Maybe when we are talking about booster seats and other automotive safety advancements. But I’m not so sure we should be too vigorous as we pat ourselves on the back.

On the other hand, aren’t these decreases in injuries related to activity just more evidence of our increasingly sedentary pediatric population? Falling off the couch seldom creates an injury that generates an ED statistic. Myopia and obesity related to excess screen time doesn’t trigger data points in this study. Overexertion injuries are down. We already know the consequences of underexertion are up.

I’m not sure we need to cut back on our efforts at injury prevention but I worry that we may run the risk of discouraging healthy activity if we aren’t careful with our voices of caution.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

I suspect that, like me, you were saddened, but maybe not shocked, to learn that firearm-related fatalities have recently surpassed motor vehicle–related fatalities as the leading cause of death among children. For those of us living in Maine, this revelation came at a particularly difficult time. The body of the presumed shooter in the Lewiston massacre was found less than 10 miles from where I am writing you this letter. There is a good chance he may have been a former patient of mine, but I no longer have access to my records to confirm that.

This reshuffling at the top of the list of mortality causes is just one example of the shifting trends that have occurred in pediatric fatality statistics. In a recent analysis of the Centers for Disease Control and Prevention statistics published in Pediatrics investigators discovered that while, in general, fatal injuries have increased over the study period (2011-2021) nonfatal injuries have decreased.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

We should no longer be surprised to learn that firearm-related deaths increased more than 87%. Fatal drug poisoning was up 133% and suffocation-related deaths increased 12.5% over that 10-year period. Given this profile of fatalities, it shouldn’t surprise us that nonfatal injuries due to firearms, poisoning, and self-harm also increased.

However, nonfatal injuries in other broad categories decreased: falls were down 52.8%, overexertion 63%, struck by [something or someone] 47.3%, motor vehicle occupant 36.7%, and cut pierce 36.7%. Nonfatal drownings were unchanged.
 

Diverging trends

Fatal injuries are up and nonfatal injuries are down. What are we to make of these diverging trends? I suspect that when it comes to both firearms and drug poisonings, both fatal and nonfatal, children are now living in an environment in which the sheer volume of guns and drugs have grown the point, and will continue to grow, that contact and its consequences will continue to increase until we reach a saturation point at some unpredictable point in the future. There still may be some opportunities to curb the flow of drugs. But, I am afraid when it comes to firearms, that ship has sailed. We may have a chance to curb assault weapons, but hand guns have become ubiquitous to the point that they will continue to be a threat to children.

The increase in self-harm injuries is clearly a reflection of the increase in pediatric and adolescent mental health disturbances, which in turn is a reflection of the gloom hanging over the population in general.

But, what’s going on with the decrease in nonfatal injuries caused by falls, overexertion, struck by, and cut pierce? Is this a bit of sunshine in an otherwise cloudy picture? The authors of the paper see it as a reflection of our “public health interventions targeting pediatric safety partnered with technological advancement and legislative requirements.” Maybe when we are talking about booster seats and other automotive safety advancements. But I’m not so sure we should be too vigorous as we pat ourselves on the back.

On the other hand, aren’t these decreases in injuries related to activity just more evidence of our increasingly sedentary pediatric population? Falling off the couch seldom creates an injury that generates an ED statistic. Myopia and obesity related to excess screen time doesn’t trigger data points in this study. Overexertion injuries are down. We already know the consequences of underexertion are up.

I’m not sure we need to cut back on our efforts at injury prevention but I worry that we may run the risk of discouraging healthy activity if we aren’t careful with our voices of caution.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Diagnosing pediatric forearm fractures: Radiograph or ultrasound?

Article Type
Changed
Thu, 09/28/2023 - 09:09

 

TOPLINE:

Ultrasonography may serve as an alternative to radiography for diagnosing pediatric forearm fractures, thus reducing the number of children undergoing radiography at initial emergency department presentation, as well as their waiting time in ED.

METHODOLOGY:

  • After the World Health Organization reported a lack of access to any diagnostic imaging in approximately two-thirds of the world population in 2010, ultrasonography has gained popularity in low- and middle-income countries.
  • The initial use of ultrasonography is in accordance with the principle of maintaining radiation levels as low as reasonably achievable.
  • The BUCKLED trial was conducted, including 270 pediatric patients (age, 5-15 years) who presented to the ED with isolated, acute, clinically nondeformed distal forearm fractures.
  • The participants were randomly assigned to receive initial point-of-care ultrasonography (n = 135) or radiography (n = 135) in the ED.
  • The primary outcome was the physical function of the affected arm at 4 weeks evaluated using the Pediatric Upper Extremity Short Patient-Reported Outcomes Measurement Information System (PROMIS) tool.

TAKEAWAY:

  • At 4 weeks, mean PROMIS scores were 36.4 and 36.3 points in ultrasonography and radiography groups, respectively (mean difference, 0.1 point; 95% confidence interval, − 1.3 to 1.4), indicating noninferiority of ultrasonography over radiography.
  • Ultrasonography and radiography groups showed similar efficacy in terms of PROMIS scores at 1 week (MD, 0.7 points; 95% CI, − 1.4 to 2.8) and 8 weeks (MD, 0.1 points; 95% CI, − 0.5 to 0.7).
  • Participants in the ultrasonography group had a shorter length of stay in the ED (median difference, 15 minutes; 95% CI, 1-29) and a shorter treatment time (median difference, 28 minutes; 95% CI, 17-40) than those in the radiography group.
  • No important fractures were missed with ultrasonography, and no significant difference was observed in the frequency of adverse events or unplanned returns to the ED between the two groups.

IN PRACTICE:

Noting the benefit-risk profile of an ultrasound-first approach in an ED setting, the lead author, Peter J. Snelling, MB, BS, MPH&TM, from Menzies Health Institute Queensland, Gold Coast, Australia, said: “It is highly unlikely that any important fractures would be missed using the protocol that we trained clinicians. The risk is low and the benefit is moderate, such as reducing length of stay and increased level of patient satisfaction.”

He further added that, “with an ultrasound-first approach, clinicians can scan the patient at time of review and may even be able to discharge them immediately (two-thirds of instances in our NEJM trial). This places the patient at the center of care being provided.”
 

SOURCE: 

Authors from the BUCKLED Trial Group published their study in the New England Journal of Medicine.

LIMITATIONS:

PROMIS scores may have been affected by variations in subsequent therapeutic interventions rather than the initial diagnostic method. PROMIS tool was not validated in children younger than 5 years of age.

DISCLOSURES:

The study was funded by the Emergency Medicine Foundation and others. The authors have declared no relevant interests to disclose.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Ultrasonography may serve as an alternative to radiography for diagnosing pediatric forearm fractures, thus reducing the number of children undergoing radiography at initial emergency department presentation, as well as their waiting time in ED.

METHODOLOGY:

  • After the World Health Organization reported a lack of access to any diagnostic imaging in approximately two-thirds of the world population in 2010, ultrasonography has gained popularity in low- and middle-income countries.
  • The initial use of ultrasonography is in accordance with the principle of maintaining radiation levels as low as reasonably achievable.
  • The BUCKLED trial was conducted, including 270 pediatric patients (age, 5-15 years) who presented to the ED with isolated, acute, clinically nondeformed distal forearm fractures.
  • The participants were randomly assigned to receive initial point-of-care ultrasonography (n = 135) or radiography (n = 135) in the ED.
  • The primary outcome was the physical function of the affected arm at 4 weeks evaluated using the Pediatric Upper Extremity Short Patient-Reported Outcomes Measurement Information System (PROMIS) tool.

TAKEAWAY:

  • At 4 weeks, mean PROMIS scores were 36.4 and 36.3 points in ultrasonography and radiography groups, respectively (mean difference, 0.1 point; 95% confidence interval, − 1.3 to 1.4), indicating noninferiority of ultrasonography over radiography.
  • Ultrasonography and radiography groups showed similar efficacy in terms of PROMIS scores at 1 week (MD, 0.7 points; 95% CI, − 1.4 to 2.8) and 8 weeks (MD, 0.1 points; 95% CI, − 0.5 to 0.7).
  • Participants in the ultrasonography group had a shorter length of stay in the ED (median difference, 15 minutes; 95% CI, 1-29) and a shorter treatment time (median difference, 28 minutes; 95% CI, 17-40) than those in the radiography group.
  • No important fractures were missed with ultrasonography, and no significant difference was observed in the frequency of adverse events or unplanned returns to the ED between the two groups.

IN PRACTICE:

Noting the benefit-risk profile of an ultrasound-first approach in an ED setting, the lead author, Peter J. Snelling, MB, BS, MPH&TM, from Menzies Health Institute Queensland, Gold Coast, Australia, said: “It is highly unlikely that any important fractures would be missed using the protocol that we trained clinicians. The risk is low and the benefit is moderate, such as reducing length of stay and increased level of patient satisfaction.”

He further added that, “with an ultrasound-first approach, clinicians can scan the patient at time of review and may even be able to discharge them immediately (two-thirds of instances in our NEJM trial). This places the patient at the center of care being provided.”
 

SOURCE: 

Authors from the BUCKLED Trial Group published their study in the New England Journal of Medicine.

LIMITATIONS:

PROMIS scores may have been affected by variations in subsequent therapeutic interventions rather than the initial diagnostic method. PROMIS tool was not validated in children younger than 5 years of age.

DISCLOSURES:

The study was funded by the Emergency Medicine Foundation and others. The authors have declared no relevant interests to disclose.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Ultrasonography may serve as an alternative to radiography for diagnosing pediatric forearm fractures, thus reducing the number of children undergoing radiography at initial emergency department presentation, as well as their waiting time in ED.

METHODOLOGY:

  • After the World Health Organization reported a lack of access to any diagnostic imaging in approximately two-thirds of the world population in 2010, ultrasonography has gained popularity in low- and middle-income countries.
  • The initial use of ultrasonography is in accordance with the principle of maintaining radiation levels as low as reasonably achievable.
  • The BUCKLED trial was conducted, including 270 pediatric patients (age, 5-15 years) who presented to the ED with isolated, acute, clinically nondeformed distal forearm fractures.
  • The participants were randomly assigned to receive initial point-of-care ultrasonography (n = 135) or radiography (n = 135) in the ED.
  • The primary outcome was the physical function of the affected arm at 4 weeks evaluated using the Pediatric Upper Extremity Short Patient-Reported Outcomes Measurement Information System (PROMIS) tool.

TAKEAWAY:

  • At 4 weeks, mean PROMIS scores were 36.4 and 36.3 points in ultrasonography and radiography groups, respectively (mean difference, 0.1 point; 95% confidence interval, − 1.3 to 1.4), indicating noninferiority of ultrasonography over radiography.
  • Ultrasonography and radiography groups showed similar efficacy in terms of PROMIS scores at 1 week (MD, 0.7 points; 95% CI, − 1.4 to 2.8) and 8 weeks (MD, 0.1 points; 95% CI, − 0.5 to 0.7).
  • Participants in the ultrasonography group had a shorter length of stay in the ED (median difference, 15 minutes; 95% CI, 1-29) and a shorter treatment time (median difference, 28 minutes; 95% CI, 17-40) than those in the radiography group.
  • No important fractures were missed with ultrasonography, and no significant difference was observed in the frequency of adverse events or unplanned returns to the ED between the two groups.

IN PRACTICE:

Noting the benefit-risk profile of an ultrasound-first approach in an ED setting, the lead author, Peter J. Snelling, MB, BS, MPH&TM, from Menzies Health Institute Queensland, Gold Coast, Australia, said: “It is highly unlikely that any important fractures would be missed using the protocol that we trained clinicians. The risk is low and the benefit is moderate, such as reducing length of stay and increased level of patient satisfaction.”

He further added that, “with an ultrasound-first approach, clinicians can scan the patient at time of review and may even be able to discharge them immediately (two-thirds of instances in our NEJM trial). This places the patient at the center of care being provided.”
 

SOURCE: 

Authors from the BUCKLED Trial Group published their study in the New England Journal of Medicine.

LIMITATIONS:

PROMIS scores may have been affected by variations in subsequent therapeutic interventions rather than the initial diagnostic method. PROMIS tool was not validated in children younger than 5 years of age.

DISCLOSURES:

The study was funded by the Emergency Medicine Foundation and others. The authors have declared no relevant interests to disclose.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE NEW ENGLAND JOURNAL OF MEDICINE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article